Module O - Introduction

4 N
X Building Solutions Using Windows Embedded CE 6.0 R2)
F B

& Windows Embedded CE6.0

i ®

Welcome to the “Building Solutions Using Windows Embedded CE 6.0 R2” training course.

Module 0 - Introduction

p
N Course Outline

“

7

e Module 1:
e Module 2:
e Module 3:
e Module 4:
e Module 5:
e Module 6:
e Module 7:
e Module 8:
e Module 9:
e Module 10:

o Course Introduction

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development

Testing & Verification

Module O - Introduction

~ Course Introduction

» Welcome
» Microsoft’s Embedded OS Offerings

» Who & What is This Course Targeted At?
» Review

Module O - Introduction

7
Course Introduction
. S
- N
» Welcome
e Microsoft’s Embaddand-O0C-Nffarinae
o Who & Wha * Facilities \t?
* Building hours
e Review * Class hours
* Restrooms
* Parking
* Web access
* Meals/refreshments
* Smoking
* Recycling
N »

Module 0: Course Preliminaries

4 ™
1 J
4 R
Introduction
BSQUARE
% S

Module 0: Course Preliminaries

What We Do

(| |- N [i —— Bo_at =0 _

BSQUARE is a smart device soiutions provider
for leading OEMs, ODMs, silicon vendors and
peripheral vendors

Module 0: Course Preliminaries

Founded in 1994 to provide compiler & tool chain
engineering services for Microsoft WinCE Team

Went public (BSQR) in 1999 and continued to
evolve products and services as new opportunities

amargod
em

erged
Delivered hundreds of successful Sl engagements

Microsoft

S Wi w N P
LIL/ ﬁ!,’gg'd%‘ggs /3; 7 Windows Mobile

= Window Embedded CE = Standard (Smartphone)
= Windows Embedded Standard = Professional (PPC Phone Edition)
= Targeted Platforms = Classic (Pocket PC)

= Microsoft Auto 4 » Portable Media Center

Module 0: Course Preliminaries

How We Do It

Consulting & Engineering Services

Leading systems integrator for Windows CE, Windows XPe,

Windows Mahile for Smartnhone and PacketPC Windows
ows Viocptie Tor smaripnene ang Focketyry, Winaows

Embedded for Point of Service (WEPOS)

Third Party Products

BSQUARE Products
SDIO Hx Solutions
Device Validation TestSuite™ for OMAP™ 3 BSP
Flash Ul Extender for OMAP35x
OMAP35x Wireless DevKit
SchemaBSP Development Tools
TQ CountDown

Module 0: Course Preliminaries

o i Qg G
LONSuning o Eingineering oervices

Platform Software Engineering

Application and Middleware Engineering

Hardware Engineering

QA, Testing and Pre-Certification Quality Assurance
Training — classroom, custom and onsite

Technical Support

Highly customized, critical-path consulting
and engineering services

Module 0: Course Preliminaries

10

Virtual warehouse

Shipping worldwide

Microsoft liaison
Marketing

Joint marketing with Microsoft
Engineering

Toolkits
Support

Module 0: Course Preliminaries 11

SDIO Hx
Multi-slot, High-Performance SDIO Software Stack

r_..i-_ AT e T e ta T f_.. MALAADTM 3 DD

vice Validation TestSuite Of UIVIAF ~ 3 Dor

Comprehensive set of QA tests for an OMAP™ 3 & WinCE 6.0 R2
design

Flash Ul Extender
Middieware software package that sits between the Fiash Piayer
and platform and provides a seamless connection between
Fiashiite’s Actionscript and machine/0S subsystem.

OMAP35x Wireless DevKit

Complete 3G Wireless DevKit for the OMAP 35x Reference
Platform

SchemaBSP Development Tool
Software development tool for creating board support packages
TQ CouniDown

Provides the test and application development, controls, and
management for test automation.

SDIO Hx —

*Only SDIO software stack offering multiple-slot support with a single host controller chip decreasing device
size and cost.

eSupports 802.11g Wi-Fi throughput rates to 15 Mbps on select applications processors. Ideal for GPS,
streaming media, VolP, and other applications requiring high data throughput rates.

eAccelerates time to market leveraging BSQUARE’s industry-standard SDIO software stack including support
for SD, SDIO and MMC specifications.

Module O - Introduction

12

Welcome (continued)

Introductions
Name
Company affiliation
Title/function
Job responsibility
Programming experience
Previous Windows Embedded CE experience

Expectations for the course

Module O - Introduction

13

Welcome (continued)

Course Materials
Student workbook
Lab manual
Electronic version of materials

Web-based course evaluation

Module O - Introduction

14

Welcome (continued)

Hardware Setup
Development workstation
Visual Studio 2005
Windows Embedded CE 6.0 R2

Reference Board

Module O - Introduction

15

Course Introduction

Microsoft’s Embedded OS Offerings

* .NET Micro Framework
| « Windows Embedded CE & SKUs
* Windows Mobile & SKUs
* Microsoft Auto
* Windows Embedded Standard
* Windows Embedded for Point of Service
* Previous versions

Windows Embedded CE SKUs include Core, Professional, Windows Embedded CE 6.0 for Handheld GPS, and
Windows Embedded CE 6.0 for Set Top Box.

Windows Mobile and Windows Automotive are based on Windows Embedded CE.

Windows XP Embedded, Windows Embedded for Point of Service, Windows Vista Business for Embedded
Systems, and Windows Vista Ultimate for Embedded Systems are based on desktop operating systems.

Generally the Microsoft offering’s are viewed in terms of more or less functionality. This must be kept in
perspective of the needs of the device running the OS.

(e.g. If the needs dictate an ARM processor, running real-time, with less that 16MB of memory, then you can
see that Windows Embedded CE is really the OS with the features required.)

Previous versions include the many versions of Windows Embedded CE and the predecessor to XP Embedded;
NT Embedded.

http://www.microsoft.com/embedded

Module O - Introduction

16

Microsoft’s Embedded OS Offerings (continued)

.NET Micro Framework

Leverages .NET technology and the Visual Studio toolset
targeting less expensive and more power efficient 32-bit
processors

Supports managed code, C# development, including
device drivers

SDK includes extensible emulator
Supports a number of ARM7 and ARM9 processors

Targeted at devices such as sensor nodes, auxiliary
displays, health monitors, remote controls, and robotics

.NET Micro Framework landing page:
http://msdn2.microsoft.com/en-us/embedded/bb267253.aspx

The .NET Micro Framework can have a footprint as little as 250-500KB with support for managed code.
In addition to the bullets listed here a couple other things that could be noted include the fact that the .NET

Micro Framework does not require and MMU, it is not designed to be real-time, and that native code is only
supported though interop.

Module O - Introduction

17

Microsoft’s Embedded OS Offerings (continued)

Windows Embedded CE Based
Hard real-time support
Support for X86, MIPS, ARM, SH4 (requires MMU)

Supports managed and native code application
development

Targeted at devices such as VolP phones, set top boxes,
PDAs, GPS, and industrial controllers

Windows Mobile
Microsoft Auto 4

Windows Embedded CE landing page:
http://msdn2.microsoft.com/en-us/embedded/aa731407.aspx

Module O - Introduction

18

Microsoft’s Embedded OS Offerings (continued)

Embedded Version of Desktop Operating Systems

X86 Support; typically greater than 40MB footprint; >10K
components

Typically not as power consumption sensitive

PC class performance with embedded features; built with
same bits as desktop OS

Targeted at devices such as thin clients, ATMs, and kiosks

Includes:
Windows Embedded Standard
Windows Embedded for Point of Service

Windows Embedded for Point of Service provides Plug-n-Play functionality for many retail device peripherals. It
is build on top of XP Embedded and provides a quicker time to market for devices used in point of service
applications.

Windows Embedded Standard landing page:
http://msdn2.microsoft.com/en-us/embedded/aa731409.aspx

Windows Embedded for Point of Service:
http://msdn2.microsoft.com/en-us/embedded/aa714298.aspx

Module O - Introduction

19

7

\.

Course Introduction

//_

e Re

e Welcome
e Microsoft’s Embedded OS Offerings
» Who & What is This Course Targeted At?

LLoAL

* Who?
* Those that will be involved in the creation and
customization of the OS image for a device.
* BSP Developer
* OS Builder

* Device Driver Developer
* QA and Test

AN

Module O - Introduction

20

-
kWho & What is This Course Targeted At? (continued)

/
» What?

» The process of creating a product OS image

Create OS Design Project |

ﬁate/&eate BSP() I
q_c;fCustomize Drivers () I
momize OS Design ()]
q_/suild the 0S 0 |
mication Development () I
q—/ Testing) |

q_/ Deployment

Module O - Introduction 21

Who & What is This Course Targeted At? (continued)

Helpful Prerequisites
Programming experience in C or C++
Some knowledge of Windows operating systems internals
Win32 API programming experience
Device driver development experience

Embedded operating systems experience

Module O - Introduction

22

s

kCourse Introduction

7

e Welcome

e Microsoft’s Embedded OS Offerings

e Who & What is This Course Targeted At?
» Review

Module 1 - OS Overview

23

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

Operating System
Overview

Module 1 - OS Overview

24

p
. Course Outline

.

7

e Course Introduction

» Module 1:
e Module 2:
e Module 3:
e Module 4:
e Module 5:
e Module 6:
e Module 7:
e Module 8:
e Module 9:
e Module 10:

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development

Testing & Verification

Module 1 - OS Overview

25

Operating System Overview

» Characteristics of Windows Embedded CE
» History of Windows Embedded CE

* What’s New in CE 6.0 R2?

* Review

Module 1 - OS Overview

26

Operating System Overview

Characteristics of Windows Embedded CE

* 32 Bit, Scalable, Componentized, Real-time
* Hundreds of Features

* Variety of Processor Architectures Supported
* Familiar & Rich Tool Chain

* Source Access

* Wide Support and Ecosystem

* Value

Windows Embedded CE is designed for small footprint embedded devices, and is designed to allow customers
to get to the market quickly.

Module 1 - OS Overview

27

Characteristics of Windows Embedded CE (continued)

32 Bit, Scalable, Componentized, Real-time
Preemptive multitasking
Virtual protected memory model
Multiple processes (PE Format EXEs)
Multiple threads
256 priorities
Based on Win32

Real-time performance:
http://msdn2.microsoft.com/en-us/library/aa908633.aspx

Since the executables use PE format, tools that operate on PE files, such as Dumpbin and Depends will work on
Windows Embedded CE executable files.

Module 1 - OS Overview

28

~
{

|\ Characteristics of Windows Embedded CE (continued)

)

L

» Hundreds of Features

o http://www.microsoft.com/windows/embedded/eval/wince/compo
nents.mspx
End user applications
Applications and services
Communication services and networking
Core OS services
Device management
File systems and data store
Fonts
Graphics and multimedia technologies
Media
International
Internet client services
. Security
Shell and user interface
Voice over IP phone services
Windows Embedded CE error reporting

N\

http://www.microsoft.com/windows/embedded/eval/wince/components.mspx

Module 1 - OS Overview

29

Characteristics of Windows Embedded CE (continued)

Variety of Processor Architectures Supported

ARM, x86, MIPS, SH4
MMU required
Each with sample BSPs
Kernel source part of source code program

Supported processors:
http://msdn2.microsoft.com/en-us/embedded/aa714536.aspx

With the support for ARM, SH4, MIPS, and x86 architectures, the total number of processors supported is quite
high; some with direct support out of the box, others with support from chip manufacturers or 3" parties and
still some that would require significant development.

Module 1 - OS Overview

30

Characteristics of Windows Embedded CE (continued)

Familiar & Rich Tool Chain

Visual Studio, Remote Tools, Emulator, Test tools
Windows Embedded CE is a plug-in for Visual Studio
Emulator

Remote tools for performance tuning, debugging, and
information management

Extensible test framework

Visual Studio landing page:
http://msdn2.microsoft.com/en-us/vstudio/default.aspx

Module 1 - OS Overview

31

Characteristics of Windows Embedded CE (continued)

Source Access

Shared source program
“In the Box”

Premium shared source program
Available to those qualified through secure website

Community source projects
USB Webcam, Wi-Fi Driver, ...

Access to Windows Embedded CE source code helps developers debug, test, and make changes to an OS image.

It also allows you to modify the operating system software to create differentiated features while maintaining
control over your intellectual property.

Info on Shared Source:
http://msdn2.microsoft.com/en-us/embedded/aa714518.aspx

Community Source Projects include:
Open SSH
MPEG-2 Demux
Wi-Fi Driver
Phidgets
Bluetooth Wrapper
Layered Services Providers
Gumstix BSP
USB Webcam

Links for these projects can be found through the shared source info link above.

Module 1 - OS Overview

32

Characteristics of Windows Embedded CE (continued)

Wide Support and Ecosystem
MSDN
Blogs

Other resources

Module 1 - OS Overview

33

Characteristics of Windows Embedded CE (continued)

Value
Features vs. pricing
Entry costs

Maintenance costs

Module 1 - OS Overview 34

Operating System Overview

History of Windows Embedded CE

| Windows CE 1.0 Windows CE 3.0 | Windows CE 5.0 Windows Embedded CE 6.0 R2
11/1996 04,2000 07/2004 11/2007

1997 e 1999 e 2001 @ 2003 e 2005 @ 2007 e

Windows CE 2.0 Windows CE .NET 4.0 Windows Embedded CE 6.0
09/1997 01,2002 09/2006

Here is a link to a detailed visual timeline:
http://upload.wikimedia.org/wikipedia/commons/c/cb/Windows_CE_Timeline.png

What does CE stand for:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q166915

Windows Embedded CE started as a command line build only product and in mid 2.x releases was provided a
GUI build environment all its own. For version 3.0 there was a major kernel rewrite from the ground up to
improve real-time performance. Version 4.x saw the integration of the compact framework as well as many
build environment improvements. Version 6.0 was the first version that saw the integration of the build
environment into Visual Studio as well as major changes to the memory architecture to provide applications
with increased memory space.

Module 1 - OS Overview 35

Operating System Features

What’s New in CE 6.0 R2?

* Remote Desktop Protocol (RDP) 6.0

* Updates for Internet Explorer 6

* New Sample Board Support Packages

* Web Services on Devices APl (WSDAPI)

* USB CCID Smart Card Reader Class Driver
* Windows Media Player OCX 7.0

* Voice over IP (VoIP) Phone Services

* File System Updates

* Pluggable Font Support

* Check out the Release Notes!

Support for Remote Desktop Protocol (RDP) 6.0. RDP 6.0 includes support for Secure Sockets Layer/Transport
Layer Security (SSL/TLS), Network Level Authentication, Server Authentication, and 32-bit color graphics.
Support for Microsoft Web Services on Devices (WSDAPI), which is an unmanaged code implementation of the
Devices Profile for Web Services (DPWS) protocol standard.

Support for Video over IP telephony calls.

Additional Voice over IP (VolIP) functionality, including a VolP boot loader application and resources for QVGA
landscape mode and QVGA portrait mode user interfaces.

Support for the Pocket Outlook Object Model (POOM) and ActiveSync in the VolP Home Screen and VolP
Contacts applications.

New sample board support packages (BSPs).

Support for Auto Proxy Configuration Support in Internet Explorer 6 for Windows Embedded CE.

New driver that supports USB CCID Smart Card readers.

Support for Windows Media Player OLE Control Extension (OCX) 7.

New componentized flash driver and new partition driver for the management of flash memory.

Improved Secure Digital (SD) bus driver that supports SDHC specification 2.00 functionality, for example Secure
Digital High-Capacity (SDHC) cards.

Sample Serial ATA driver, extended from the ATAPI driver, which supports the Promise PDC40518 SATA card.
Support for pluggable third-party font drivers.

Support for Extended File Allocation Table (ExFAT) and FAT32 on the x86 BIOS Loader, which provides access
beyond 2 gigabytes (GB) of hard disk space.

Module 1 - OS Overview

36

A \
X Operating System Features)
a4 N\

e Characteristics of Windows Embedded CE
e History of Windows Embedded CE

e What’s New in CE 6.0 R2?

* Review

Module 2 - The Tools

37

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

Tools for Platform
Development

Module 2 - The Tools

38

p
N Course Outline

“

7

e Module 1:
» Module 2:
e Module 3:
e Module 4:
e Module 5:
e Module 6:
e Module 7:
e Module 8:
e Module 9:
e Module 10:

e Course Introduction

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development

Testing & Verification

Module 2 - The Tools

39

Tools for Platform Development

Visual Studio 2005 & CE 6.0 R2 Installation
Windows Embedded CE Terminology

A Look at the IDE

Lab 2.1 - Our First OS

Introduction to the Build Process

Lab 2.2 — Develop & Test an Application Subproject
Testing and Debugging the OS Design

Lab 2.3 — Using the Remote Tools

Windows Embedded CE Directory Structure
Review

Module 2 - The Tools 40

Tools for Platform Development

» Visual Studio 2005 & CE 6.0 R2 Installation

* Installation Order
' » Visual Studio 2005
* Windows Embedded CE 6.0
* Visual Studio 2005 SP1
* Visual Studio 2005 SP1 Update for Vista (Vista
only)
* Windows Embedded CE 6.0 SP1
* Windows Embedded CE 6.0 R2
* CE 6.0 R2 contains QFEs through end of Aug 2007
* Can | install Windows CE 5.0 on the same
machine?

* Windows XP vs. Windows Vista

Starting with the initial release of Windows Embedded CE 6.0, the build tools are run from within the Visual
Studio 2005 environment.

Installation should be completed in the order above. Note that R2 contains all updates through August 2007;
any updates after the August 2007 updates will need to be installed following this installation.

http://blogs.msdn.com/dcook/archive/2007/05/13/does-pb-5-0-work-side-by-side-with-pb-6-0.aspx

Module 2 - The Tools

41

-
N Tools for Platform Development

7

%

e Visual Studio 2005 & CE 6.0 R2 Installation
» Windows Embedded CE Terminology

o/ laonl a2t thg IDE

o |

Catalog A container of individually selectable units of Windows Embedded CE
e || functionality.

Catalog item Any item that you can select from the Catalog.
@

0S Design A selection of Catalog items that defines the characteristics of an OS.
eTl You can begin an OS Design with or without a design template. An 0S

Design corresponds to a set of Sysgen variables.
ol Component The smallest unit of functionality that you can add to an OS Design.

o\l

e Review

Link to terminology in Windows Embedded CE:
http://msdn2.microsoft.com/en-us/library/aa924102.aspx

Module 2 -

The Tools

42

-
kWindows Embedded CE Terminology (continued)

7

N

Design template

Run-time image
Board support

package (BSP)
Configuration

Hardware platform

Module

Subproject

Target device

Project

A pre-defined selection of operating system (OS) components that Microsoft provides
for a category of target devices. A design template is a starting point. When saved or
modified, the design template becomes an OS Design.

Software to deploy on a target device, or the same software running on a target device.
A run-time image contains the OS and associated software.

Software that is specific to a hardware board. This software typically includes the boot
loader, OEM adaptation layer (OAL), and board-specific device drivers.

A selection of Catalog items and a selection of build options.

A hardware architecture for running a Windows Embedded CE OS and associated
software.
An EXE or a DLL that is a part of a Windows Embedded CE OS.

A tracking mechanism for a collection of files that you can use to build functionality into
a Windows Embedded CE OS.

An instance of a hardware architecture or an instance of a combined hardware and
software architecture.

A container for all files related to an OS Design.

Link to terminology in Windows Embedded CE:
http://msdn2.microsoft.com/en-us/library/aa924102.aspx

Module 2 - The Tools

43

p
N Tools for Platform Development

“

7

e Windows Embedded CE Terminology
» A Look at the IDE
e Lab 2.1 - Our First
e Introduction to th|

Fir Fda Vew Pt buld Debey Teged Tosh Widew Cowenty Help
@-u-SE@shn -~

i wben i B
e i

LB Traglh f - Puen e LTOTER, - |) buimiom

e Visual Studio 2005 & CE 6.0 R2 Installation

e Testing and Debug

a
] 9 Campaq 4418 T Chanend ol
. D L] M BPnadrs i b et sl obliarbart e
e Lab 2. evelop| Gz B
3 Dvme e

L L L LT —
4t b I 1

Thed, 20 e 2061 IRELID ST - Framm Mt &, 200 - My T
001 by oo CUTTOUITE s e LA

min 3 e prsa g s b Teniwnd. Thi g b mamd.
et o b, ey gt s o hrmey o, wnd 1
L ofths Ry e i s Pl 30 bk et

e Lab 2.3 — Using thi

S PR STV E oo, ot B
Th, 1 s AT T AT - Lt 58 et o e e b

e Windows Embedd

A 0 Wi b e gt b et bl

e Review

Module 2 - The Tools

44

rf

kTools for Platform Development

7

e Visual Studio 2005 & CE 6.0 R2 Installation Overview
e Windows Embedded CE Terminology

e A Look at the IDE

» Lab 2.1 - Our First OS

e Intro[, -
* Lab Goals

elab? 1. cloneaBsp [t
e Testi 2. Create an OS Design using Visual Studio

3. Identify the catalog features included in the
e Lab2 design

e Wind 4. Extend the standard design by adding
catalog items

Build configuration for the run-time image
and build a run-time image

* Video

e Revid 5,

AN

Module 2 - The Tools

45

- Tools for Platform Development

» Introduct l Pre-Sysgen Build |

|

‘ Sysgen Build |

v

[Post -Sysgen Build |

[Build Release Directory (Buildrel) I

‘ Make Image (Makeimg) |

Pre-Sysgen Build
This is the feature build phase and it compiles the source code that is provided by Microsoft in the
various Public subdirectories (_DEPTREES). Microsoft provides the binaries for these components as
well, so there is no need to compile the source code unless it has been changed. You should not
modify the source code in these trees, so there should be no reason to run this step. This step is only
exposed in the Build menu as part of the Advanced Build Commands.

System Generation and Post Sysgen Build
Filters modules and components based on OS Design settings. Then build the BSP.

Build Release — BUILDREL
Copies files into the Flat Release Directory

Make Image
Generates the OS Run-Time Image from the files in the Release Directory

This build process will be discussed in length throughout the course.

Module 2 - The Tools

46

Introduction to the Build Process (continued)

Two Methods of Building (with many variations for expert
building)

IDE
Building in its simplest form is accomplished by selecting a menu
item

Command Line

Typically considered advanced
Used by the IDE behind the scenes

Module 2 - The Tools

47

s

kTooIs for Platform Development

7

e Visual Studio 2005 & CE 6.0 R2 Installation
e Windows Embedded CE Terminology

e A Look at the IDE

e Lab 2.1 — Our First OS

e Introduction to the Build Process

» Lab 2.2 — Develop & Test an Application Subproject

e Testing.and Nehngging the NS Nocion

* Lab Goals

1. Create an Application Subproject
e Win 2. Deploy the Application
3. Debug the Application

* Video

e Lab

e Rev

J &

Module 2 - The Tools

48

-

kTooIs for Platform Development

7

e Visual Studio 2005 & CE 6.0 R2 Installation

e Windows Embedded CE Terminology

e A Look at the IDE

e Lab 2.1 — Our First OS

e Introduction to the Build Process

e Lab 2.2 — Develop & Test an Application Subproject
» Testing and Debugging the OS Design

* Debug Windows in Visual Studio

* Remote Tools

® R¢ e Launching a Program

* CETK (We’ll look at this in depth later)

e La
e W

Module 2 - The Tools

p
3 Testing and Debugging the OS Design (continued)

a N
» Debug Windows in VS

Debug lTarg:t Tools ‘Window Community
| Windows I

“

&l

Breakpoints Alt+F3

N r St FS Watch

| m Breakan Ctrl +Alt+Break Autos Chrl+AltoV, A
@ Stop Debugging Shift+F3 Call Stack Alt+T

Exceptions... Ctrl +AIt+E Threads Ctrl+Alt+H

DUy Modules Ctrl+Alt+l)

Processes Ctrl+Shift+Alt+P

Memo-y

Disassernbly

Registers

Advanced Memory

List Nearest Symbol

ource Path Mapping.,
Symbol Search Path...
Windows CE Debugger Extensions...

y to Location.

Y dOewH

Step Out
QuickWatch.., Ctri+Alt+Q
Toggle Breakpoint F9

e oW

New Breakpoint

Delete All Breakpoints Ctrl+Shift+F9

_ | y

The Debug Menu provides access to many windows for debugging purposes, including those shown here.

Module 2 - The Tools

50

-
kTesting and Debugging the OS Design (continued)

7

» Remote Tools
» File Viewer
« Heap Walker
« Zoom
» Registry Editor
» System Information
« Performance Monitor
* Spy
« Kernel Tracker

« Call Profiler

.g Targe:.- Tools Window Community Help
-|¥m Attach Device atform Builder (TGTCPL = | [# sou

1 B
et

EE Target Control Alt+1

&' Connectivity Cptions... .
Debug Message Options... MSDN: Windows Embedded Develd

'zji Release Directory Modul D E |
| Remote Tools [File Viewer Yo |
- - o e
Heap Walker
Zoom e
Process Viewer Pzl
| Registry Editor ™
pen: Project.. |Web Site... Systern Information ol
Lreate: Project.. |Web Site... url
| y Performance Monitor 4 !
1
I Sey st
ettiogStarted _______| T e
([What's New in Platform Builder =~ Call Profiler
Platform Builder Release Notes |

Module 2 - The Tools

51

p
kTesting and Debugging the OS Design (continued)

J €

7

N

i un ram — 23
» Launching a Program Run Prog
Avalable Programs:
. | ehoot exe = (e
» Target Control Window e e [An]

» From the Target menu,
select Run Programs

» Command Line/ Run
Dialog
Windows CE Command Prompt (Alt-1) 1 -

Windows CE Command Prompt
<command>: Shell commands ("7?" for shell help)
*.<command>‘ : Debugger commands ('.?' for help)
*t<{command>‘: Debugger extension commands
Ctrl-0: Abort pending command
Ctrl-L: Clear all
Ctrl-fA: Select all
Ctrl-F: Find (F4: Search forward, Shift-F4: Search backwarc

Windows CE>_

In addition to the run dialog on the device the command line shell maybe used if it is built in.

Module 2 - The Tools

52

rf

k\Tools for Platform Development

7

® VISUEI Chssalie AWNOAr O ~C C MDY lackhallobh: o
N * Lab Goals
e Win 1. Become familiar with connecting the remote tools
e A Loo 2. Become familiar with the use of Remote File Viewer
3. Become familiar with the use of Remote System
e Lab2 .
Information
e Introg 4, Become familiar with the use of Remote Performance
e LabB . Monitor
| ® Video
® Testl 5 (=L L"] UCUUESIIIB LIS Vo UCJIBII

» Lab 2.3 — Using the Remote Tools
e Windows Embedded CE Directory Structure

e Review

AN

Module 2 - The Tools

53

Tools for Platform Development

* Environment Variables

< * %_WINCEROOT% (Often C:\WINCE®600)
* % WINCEROOT%\OSDesigns

* %_WINCEROOT%\Platform

* %_WINCEROOT%\Public

* %_WINCEROOT%\SDK

* %_WINCEROOT%\Other

* %_WINCEROQOT%\Private (optional)

* Visual Studio Directories

» Windows Embedded CE Directory Structure

Note that environment variables are used extensively for paths.

During the installation process a number of folders are “installed”. There are also folders that are created
dynamically as needed.

Module 2 - The Tools 54

Windows Embedded CE Directory Structure (continued)

Environment Variables

Explore the Environment Variables using “set”
_DEPTREES
_FLATRELEASEDIR
PBWORKSPACE, PBWORKSPACEROOT
_PLATFORMDRIVE, _PLATFORMROOT
_PROJECTROOT
_PUBLICDRIVE, _PUBLICROOT, _SDKDRIVE, _SDKROOT
_TARGETPLATROOT, _TGTCPU, TGTPLAT, TGTPROJ
Many more...

Module 2 - The Tools

7

f N
kWindows Embedded CE Directory Structure (continued))
» %_WINCEROOT%\OSDesigns

\
» Created dynamically as the default location for new OS
Designs
« Each OS Design is contained in a sub folder
» Each OS Design contains a “reldir”

.....

Users

Dutetaken Togn
..............
vl

v Name Sar Ratey
CRE b) | LEb
. ‘ HepTetl MHedioWordion el 0K
L tempsdspace
a i TrainingODesign |
+)i TruningOSDesign
& Hes "
d
| 2 |1 @

Wscell Towin ingOriDuesiy . Train: ingOrSDiesiy

()

J tous
17 thems (Disk free space 64 GBY

M Compute

Module 2 - The Tools

56

4 N
kWindows Embedded CE Directory Structure (continued))

7

* %_WINCEROOT%\Platform

« Contains the installed BSP common code

» Contains the installed BSPs

« Contains the newly created or cloned BSPs

——— -w
G w[0 = wicess » PLATFORM »

4 b WINCESDD
& CRC
ki O3Desgns
U cmiens COMMON
vR onke] e
4 ARUBABOARD
L cenc Jb| Firoer
b COMMON :
A DEVICEEMULATOR
J HASAMPLE | J |
ki MAINSTONER
ki Tss30
L TesiningBi0 H
L VOIP_FXATTD)

|]

TS5
WO PXadin

A _DRRJATE
1#em selected

) i

‘ | TrainingB3®

“ e Fodas

i “ eCEEMLATOR

M Computer

N

Module 2 - The Tools

57

4 N
kWindows Embedded CE Directory Structure (continued))

& B
« %_WINCEROOT%\Public

« Platform independent drivers and code (may be chip
specific)

« Component and configuration files not specific to a
hardware platform or a specific OS Design

IR | » Computer » WPeload C) s WNCESBD » PUBUES ~[hfsea [
:!‘.:. e v B Ve v b
& Ve oS §l Ji| o Ji e J, P
m
« 4l wnceion 17| ocom ||| owecT FBOD || eom
g.;g‘ J I} eroise §) | Fiesoise ” J.| e Foi
b ml; I 13 | MECLAAPPS & Monatype l NETCRVE
I PLATFORM “ ERET o il i | el H}- RS
wf? L OSTEST PETOOLS i RDP [SCRIPT
g o i I|| Fits Folder ||| 5 ||| File Folide
B Windiy of 7 s T s || s | e
B D Deive (B Virtus! Clomalirive “ File Folder !'l | il Feider ” File Falder FF File Foldet
8 My Shaning Folder | %
& Network } SQUCE e WCEAPPIFE } WCESHELLFE
I oot Panet JI) roerore Jl| roe J[| ficroice Jl| reros
W Racyels B -
_ B Computer /

Module 2 - The Tools

4 N
kWindows Embedded CE Directory Structure (continued))

2 b
* %_WINCEROOT%\SDK

« Compilers for each processor family
« Linkers for each processor family

+ Other Tools

i

|(__-‘). » Computer » DW Preload (Cth » WINCEGM » SDK » BN » D86 » BB B
- e "

. r
L e =1 ldal] PR B v £
_ 23 itoms (Disk fres space: 60,3 08) A Computer /

Module 2 - The Tools

f N
kWindows Embedded CE Directory Structure (continued))

(" N
» %_WINCEROOT%\Others : :
« ATL G
. Source & Libs B aa—
MName Date modified s
« DOTNETV2 “L ane
. Compact Framework binaries “L SomEne
. EDB [’L
. Binaries J
SuLES
. SQLCE20 I .
. Binaries “L HeFolder

« VISUALSTUDIO
. Authentication Utility

Module 2 - The Tools

60

p
kWindows Embedded CE Directory Structure (continued)

\

J

/_

» %_WINCEROOT%\Private (optional installation)

oo =]|

« This is where the shared
source is installed
. DIRECTX
. OSTEST
. SERVERS
. SHELL
. TEST
. WCEAPPSFE
. WCESHELLFE
. WINCEOS

» Can modify and ship

B
B
I

i

Date modified
DIRECTX

Og,rEﬂ.,
ok
il
gt
T ok
Mok

WINCEOS

& Computer

J

Module 2 - The Tools 61

Windows Embedded CE Directory Structure (continued)

Visual Studio Directories

Visual Studio 2005 Code Top Level Projects Dir

. C:\Documents and Settings\<Login>\My Documents\Visual
Studio 2005\Projects

Visual Studio PB Plug-in Dir:
C:\Program Files\Microsoft Platform Builder\6.00

Visual Studio SmartDevice Dir:
C:\Program Files\Microsoft Visual Studio 8\SmartDevices

Common Shared Files:
C:\Program Files\Common Files\Microsoft Shared

Module 2 - The Tools

62

e Visual Studio 2005 & CE 6.0 R2 Installation

e Windows Embedded CE Terminology

e A Look at the IDE

e Lab 2.1 — Our First OS

e Introduction to the Build Process

e Lab 2.2 — Develop & Test an Application Subproject
e Testing and Debugging the OS Design

e Lab 2.3 — Using the Remote Tools

e Windows Embedded CE Directory Structure

» Review

4 N
N Tools for Platform Development)
I B

Module 3 - OS Internals

63

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

Operating System
Internals

Module 3 - OS Internals

64

p
N Course Outline

“

7

e Module 1:
e Module 2:
» Module 3:
e Module 4:
e Module 5:
e Module 6:
e Module 7:
e Module 8:
e Module 9:
e Module 10:

e Course Introduction

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development

Testing & Verification

Module 3 - OS Internals

65

Operating System Internals

- System Architecture
Memory Model
Labs 3.1, 3.2, 3.3 — Using Memory Tools
Processes and Threads
Lab 3.4 — Exploring Threads with Kernel Tracker
Synchronization Objects

» Labs 3.5, 3.6 — A Look at Synchronization
Interrupt Model
Review

Module 3 - OS Internals

66

e R
kOperating System Internals

7

/ \

» System Architecture

o]
e @
=
2
. =S
(1]
v
p=
[]
[J
@ 1]
=
[=]
=
|z [[Fsomsrou |
cf W
L
7]
® = |_
. -

i ®

http://msdn2.microsoft.com/en-us/library/aa924061.aspx

This diagram shows the overall system architecture. Fundamentally an OS that support a single process in
Kernel Mode with essentially an unlimited number of processes, 32K, in user mode. Process can have an
unlimited number of threads, which are the actual units of execution. Drivers can be either user mode or kernel
mode.

The blocks are color coded as a reference to who typically provides the major functionality within each block.

The OAL is the abstraction layer for the kernel for your specific hardware. It contains, among other things, the
interface to the system timer hardware. The drivers next to the OAL here, are the kernel mode drivers in the
system. These drivers will provide interface to specific pieces of hardware or hardware functionality in the
system. Since these drivers are kernel mode drivers that do not need any special handling to gain access to
kernel space or kernel functionality.

* kernel.dll supplies core kernel functionality

e devmgr.dll supplies the management services for drivers

e gwes.dll provides the graphics, windows, and event subsystem

« filesys.dll supplies the file system interface.

e fsdmgr.dll provides the management of file system drivers, networking DLLs,

 Kcoredll.dll provides the primary WIN32 API interface for components running in kernel mode.

In user mode, there are a number of API modules (DLLs) that provide the interfaces necessary to interface to
the kernel and/or provide the basic WIN32 functionality for components running in user mode. Additionally,
there are a number of processes running in user mode that supply certain functionality for the system.
Udevice.exe is a hosting process for user mode drivers to provide the support needed to run drivers from user
mode. There may be, and often are multiple copies of Udevice.exe running in the system. ServicesD.exe
provides the hosting process for services. Next we have the shell and other applications which can vary
dramatically from device to device.

Module 3 - OS Internals

67

s

kOperating System Internals

7

e System Architecture

» Memory Model

e Lab
e Pro
e Lab
e Syn

e Lab 3.3 — A Look at Synchronization

2 I p— I I:inﬂ h‘lnmnr\l Toolc

* Virtual Memory Model
* User Virtual Memory
* Kernel Virtual Memory

* Memory System Tools

e Interrupt Model

e Review

J &

Module 3 - OS Internals

68

Memory Model (continued)

Virtual Memory Model

Virtual Memory is Kernel Space (2GB)
divided between kernel
space and user space

User Space (2GB)

Virtual Memory:
http://msdn2.microsoft.com/en-us/library/bb202734.aspx

The Windows Embedded CE virtual memory model divides the memory into both kernel space and user space.
Kernel space is the upper 2G while user space is the lower 2G. User space is per process space, where as kernel
space is single instance.

Module 3 - OS Internals

69

Memory Model (continued)

Kernel Space (2GB)

» User Virtual Memory =

| Reserved Guard Region (1MB) |

» User Space is all the
space below —
0x80000000 Memory Mapped Objects (256MB)

» Up to 32K processes

Shared System Heap (255MB)

Shared User Mode DLLs (512MB)

. Each with 2G address
space of which 1G is
independent of other | S—
processes Primary Local Heap

Primary Thread Stack

Resources

Per Process VM (~1GB) R/W Data
R/O Data

Code

- Per process VM is used
by code, heaps and
stacks, data

| Reserved UserkData (64KB) :
—

Virtual Memory:
http://msdn2.microsoft.com/en-us/library/bb202734.aspx

Now we are looking at the area below the 2G boundary. This is considered User space. Even though we
consider the complete lower 2G to be per process space there are portions that are actually shared between
processes. At the 1G boundary we load all user mode dlls. These dllIs are single instanced from a code point of
view. There is up to 512MB of space available for the loading of these dlls. At the 1.5G boundary we have a
256MB area for memory mapped files. Above that, at the upper 256MB, of the lower 2G space, we have the
shared heap area.

Module 3 - OS Internals 70

Memory Model (continued)

= 1
Kernel Virtual Memory | system Trap Avea 256M) |

Sta rts at OXSOOOOOOO ‘ Kernel General Purpose VM (256MB) |

Cached and uncached

space is mapped to the
same physical memory [RAM Based Object Store (128MB) i
address space "] [Kernel ROM DLLs (128M8]]

Kernel General Purpose VM (256MB if supported) I

Static Mapped Uncached Address Space (512MB)

Static Mapped Cached Address Space (512MB)

User Space (2GB)

Virtual Memory:
http://msdn2.microsoft.com/en-us/library/bb202734.aspx

This diagram shows the layout of the kernel memory space with 6 major areas.

The static mapped address space provide a 512MB mapping for both cached and uncached access to up to
512MB of virtual memory space. Above that we have 128MB of kernel ROM dll space, check out addresses of
modaules in this space as you are performing the various labs. Above that, starting at address C8000000 we
have the 128MB RAM based object store. As we will see a little later this area holds the registry, a file system,
and a database. Finally, above that we have another 512MB that is used as general purpose memory for the
kernel. Depending on the processor architecture the system will take advantage of 256MB or 512MB. At the
top of the 512MB is the system trap area for relocated interrupt vectors.

Module 3 - OS Internals

71

Memory Model (continued)

Memory System Tools
Process Viewer
Heap Walker
Kernel Tracker
System Information

Target Control Commands
mi

gi mod

Toolhelp.dll — heap functions

There are many tools in Windows Embedded CE that provides some aspect of memory related functionality.
Toolhelp exposes:

CloseToolhelp32Snapshot - Closes a handle to a snapshot.

CreateToolhelp32Snapshot - Takes a snapshot of the processes, heaps, modules, and threads used by the
processes.

Heap32First - Retrieves information about the first block of a heap allocated by a process.

Heap32ListFirst - Retrieves information about the first heap allocated by a specified process.
Heap32ListNext - Retrieves information about the next heap allocated by a process.

Heap32Next - Retrieves information about the next block of a heap allocated by a process.

Module32First - Retrieves information about the first module associated with a process.

Module32Next - Retrieves information about the next module associated with a process or thread.
Process32First - Retrieves information about the first process encountered in a system snapshot.
Process32Next - Retrieves information about the next process recorded in a system snapshot.
Thread32First - Retrieves information about the first thread of a process encountered in a system snapshot.
Thread32Next - Retrieves information about the next thread of a process encountered in the system memory
snapshot.

Toolhelp32ReadProcessMemory - Copies memory allocated to another process into an application-supplied
buffer.

Module 3 - OS Internals

Memory Model (continued)
.
» Process Viewer

@, Vindows CE Remote Process Viewer - . =8 8
['Fe - View Conmection Help ——— |
Ll Bles| x|
Pracess [Fip [Base Priority |# Threads | Base Addr [Access Hey [w -
R EXE 00400002 3 53 80070000 00000000 ¢
shell.exe 00F50002 3 1 00010000 00000000
udevice.exe 01850002 3 7 00010000 00000000 L
udevice.exe 01F90002 3 1 00010000 00000000
udevice.exe 01150006 3 1 00010000 00000000
udevice.exe 03630002 3 1 00010000 00000000
explorer.axe 037D0006 3 4 00010000 oooooooo T.
EmulatorStub... 038D0D06 3 1 00010000 00000000
marvicasd . axe N3IFARNNNA k | 4 nnninnnn nnannnnn >
Thread 1D |C||mnt PID |Thrsad Priority | Aceess Koy -
03000012 00400002 251 00000000
03BCOODE 00400002 251 oooo0oDo
037C00DE 00400002 249 00000000
03750006 00400002 249 00000000
036B0006 00400002 249 00000000
03500006 00400002 109 oooooooo
03380006 00400002 251 00000000 i
> = ;
Module [Module ID [Proc Count | Global Count | Base Addr | Base Size [hModule I-

cetlkatl, a1l 94E91724 2 40E50000 24576 94E91724
cetlstub.dll 94EBEAZ20 1 1 40E60000 20480 94EBEAZ0

| teolholp.dll 97F30BAB 2 2 400FO00D 24576 97F30BAS
netui.dll 94E1C180 2 2 40200000 249856 94EIC1E0
commetrl.dll 94DCC6D0 3 3 40110000 401408 94DCCED0
fpert.dll 94DBCEFO 3 3 40080000 73rze J4DBCEFO
ceddk.d11 94E1C288 2 2 401F0000 40960 94E10288
ws2.d11 Q4CATE4D 4 4 40240000 53248 94CATE4D o

{Ready Connected Default Device. NUM

—

N J

The process viewer is shown here. While its primary use is more process and thread related; it does provide
some memory related information. You will notice the base address for processes as well as the base address
for modules within the system. Note that all Windows Embedded CE processes have a load address of 0x10000.
That is with one exception; nk.exe which is the only process that runs in kernel space.

Module 3 - OS Internals

-
3 Memory Model (continued)

- b
» Heap Walker

“

[E3) Windows CE Remote Heap Walker - Heap. Dump for Processld=037D0006 Add: 0100 s Bahe #e /B = |

SleseowWirdomeCopon ot

o|0sl Sles| @

[®] Process_List (=2 R E=3)
Heap Id | Process 1d | Process | Flag -
000071040 003700006 explorer. exe
0 :
0| [M] Heap_List for explorer.exe Processd=03700008 Heapld=00071040 [e@[=]

g Address [BlockSize [Flags
of | 0x000D0000 32 Free Eﬂ
0| | Ox000DOO20 32 Fixed
ol | 0x000DO040 192 Fixed 5
- | 0x000D0100 (7 ; =
“| | oxonopoz00 | [B]Heap_Dump for Praces:ld=03700008 Address=00000100

0%000D02E0 | [jadvess | fex
0x000D03CO | Fo50ng100 02 F4 7C 55 04 1a D3 11 94 73 00 00 F8 1E E3 ZE
| |o0opo10F B0 3¢ 6B B3 28 67 D3 11 9D 7B 00 00 8 1E F3 2E

Pl m— | LTI IO
000D012F & 01 0D 00 07 00 01 00 01 00 09 00 02 00 00 00

000D013F 06 00 00 00 DA 01 0D 00 Eé 01 OD 00 40 00 0D 00
D00DO14F 00 02 OD 00 00 01 OO0 OD 04 95 48 40 42 00 75 00
D00DO15F 69 00 6C 00 74 00 2D 00 &9 00 6E 00 20 00 47 00
000DOLGF 43 00 46 00 20 00 43 00 6F 00 64 00 &5 00 63 00
000D017F 00 00 47 00 72 00 61 00 70 00 68 00 £9 00 63 00
000DOLSF 73 00 20 00 43 00 GE 00 74 00 65 00 72 00 63 00
00UDOLSF 68 00 61 00 6E 00 67 0D 65 00 20 U0 46 0O 6F 0O
000BOLAF 72 00 €D 00 €1 00 74 00 00 00 2A 00 2E 00 47 00
D00DO1BF 49 00 46 00 00 00 69 00 &D 00 61 00 &7 00 65 00
D00DO1CF 2F 00 67 00 69 00 66 00 00 00 47 49 456 38 39 61
000DOIDF 47 49 46 38 37 61 FF FF FF EF FF FF EF FF FF EF
O00DOIEF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=
=3
=
(=]
=
=
=
=
=
=1
=
=
=
=
=
[x)
=
=3
=
o
=
=]
o
-
o
o
=
=)

[Connected Default Device T NM 4
e

__ Y,

Heaps:
http://msdn2.microsoft.com/en-us/library/bb202725.aspx

The heap walker allows us to, as the name says, walk the heap for the active processes within the system.
There are three primary windows within heap walker. First the process list window, then the heap list window a
selected process and finally a dump windows for details of an item selected from the heap list.

Module 3 - OS Internals

p
3 Memory Model (continued)

/ N
» Kernel Tracker

“

— — -
[F] Windows CE Remote Kemel Tracker T ——————— T
File Edt View Connection Help
LS| cUDAAE B Q QI umremm []| 1
S e B e M TN B N
= HEEAT < 088000
T m;dmmu <<B3000 THREAD AND PROCESS STATE
NpwhiotificationThread |- e Thiesd Runring
T B R S et e P me b i s s s e e oo i sooe el | || R Thiead Blocked
TatartupScreenThread < = = = = Thiead Sieepng
TOOMTheead < <l 3681 v Theead Migrate I
TouchPanelplSR < <@ |- m— Fiocess Aunnrng
TCursor_Thread <<i33 | o D Process Mot Running
w;mﬂ: Thru:«n I : | s
ot B Eries Citicad Section
WhdNotificationThread |«{««f-ebeebechertechectedaddodid e 4
| HeybdEventThreadProc | -{-- & Leave Criical Section
| WsednputThread < <08 ¥ Create Evert i
| Gweshtain <<Bd3F5000 F 1B SetEvent
| CE < ¥ Roset Event
| ArsDialerh sonThn L- 5 Puse Evert
| HotifyChangeThread << |- B Close Event
| CheckMediaSerse << |- B Delete Event
| RovHandler < <AZFE00L |- 15 st fox Mulkiple Dbjects
CEPowerNotficationThe |- { - B Sleep Evert |
| ThresdProc o B Create
|4| : inaThresd € I Release Semaphore
MainPasshoeleveThead B-{-H{--F-foobocbeado bbb oL L0 L L ::::.sm !
TapilserThread <<l p-fep focpecpocpes Semaphore I
CTEpWorkerThead << K- {Hi--b--t-- [Create Mutex <
ndisWarkerThread << [P Y |

_),

Kernel Tracker allows viewing of many events in the system. While not it primary use it does allow viewing heap
related events as well.

Module 3 - OS Internals

75

-
3 Memory Model (continued)

7

» System Information

QB Windows CE Remote System Information - WindowsCE - =@ = |
- - — -
File Edit View Connection Help
1‘|9n| %lﬁi ﬁ|ﬂ| ' r‘l
= & System Information Memory Item | Value
(23 Systemn Summary Memory Load 1%
=] Components Total Physical Memory 54000 KB
o= | Memory Available Physical Memory 44956 KB
(2 Power Status Page File Size 0KB
& Store Ayailable Page File Size 0KB
@532 Devices Total Virtual Memary 1048576 KB
Awailable Virtual Memory 1043008 KB
@ (] User Interface Store Pages 13500
1l RAM Pages 13500
Page Size 4096 bytes
b
0 < |y n 3
|For help, see Platform Builder Help. NUM y

Module 3 - OS Internals

76

[Memory Model (continued)

-

» gimod

base address

.

» Target Control Commands

Windows CE Command Prompt (Alt-1)

. List modules loaded and

| (Windows CE>gi mod
HOD: Hame

Windows CE Command Prompt
<comnand>: Shell commands (%" For shell help)
s { ' {*.7" for help)
"t<command}' : Debugger extension commands
Ctrl-0: Abort pending command
Ctrl-L: Clear all
Ctrl-A: Select all

Ctrl-F: Find (F&: Search forward, Shift-Fu: Search backy ™

pHodule :dwInUSE :dwUMBase:CurZone

HOD: afd.dll cO4F 0000

HE1: asyncmac.dll PheIVTIB c

Hi2: audevman.dll 9hbbdcal

HO3: autoras.dll c

Hpk: aygshell.dll 97F3I5bed

HO5: backlight.dll ¢ cB7 Foann

HB6: battdrer.dll Phb627es

HO7: busenum.dll 97F1abFD DORODOODT cO2FO0O00 OD@DOOOR
Hi8: ceddk.dll 97FITaSE LO1FO000

MDY : ceshell.dll YhdFbbFc LbcFooon

H10: commctrl.dll Phdedddc DOOODDDOZ 40110000 DODDDOOD

H11: coredll.dll 9 50010000
H12: credprov.dll 9hbbelng L
M13: credsvc.dll
Mi4: cxport.dll
H15: device.dll 97F30db0 cOZbanon
Wi6: deviceemulator_lcd.dll 94cdddab 0000001 cO7bOOOD GO0
Hi7: deungr.dll 97F30eF8 00000001 cO2cOO0D DODBOADA
H18: dhcp.dll
H19: dmatrans.dll 97eefodl [
H20: eap.dll YuchidSc DRDODDD1 cOSago0 0odoooDD
M21: emulserv.dll 0910000
H22: ethman.dll Phecc? 78O La21 0000
| M23: Filesys.dll [} 150000
(| M2k Fpecrt.dll
| M25: Fsdmgr.dll 97FbB4CO 000D0DDBZ cO3I70000 DODOOODO
M26: ques.dll ca1beans
|| M27: hd.dll 97Fde250 [
M2R: iecesxt 1l S7EATIRN 1
. i T

J €

Info on gi command:

http://msdn2.microsoft.com/en-us/library/aa935268.aspx
This tool provides another way to access the module’s base addresses.

Module 3 - OS Internals

77

p
. Memory Model (continued)

» Target Control Commands

« mikernel
. Lists kernel memory

details
« mi full
. List complete memory
details

« Legend ¢

AN

Windows CE Command Prompt (Alt-1)

=

Windows CE>mi Full

Windows CE Kernel Memory Usage Tool 0.2

Page size=4096, 13500 total pages, 11488 Free pages. 11462 b
74 pages used by kernel, @ pages held by kernel, 2012 pages
Inx Size Used Hax Extra Entries Hame

s

0: 576 49536 AD536 o 8&6(86) Thrd

1: 6% 2880 3200 320 AS(50) MapView

2: 36 43IB12 H3IBKE 36 1217(1218) APL/CStk/Prxy/HDatas
d: 156 196872 197028 156 1262(1263) Crit/Eur/Sen/Mut/Moc
4: 288 3456 37N 288 12(13) Process

5: 524 o [L] 0{ 0) Hame

6 1024 L] 0 @ 0 0) Hlprstk

(&4 (] 3456 350n 48 216(219) cleanEut/StubEvt/HodLi
Total Used = 300012 Total Extra = 848 WMaste = M16

PROC: Hame hProcess: CurAlY :dwUMBase:CurZone
POD: HH.EXE g0o7000n

PB1: shell.exe DoFsa0e2 oaa1open

PO2: udevice.exe 0190002 00010000

PO3: udevice.exe 1F50002 DOOOOODDD OODOT1OROD DOBDOOOO
PO4: udevice.exe 01150006 Boa10000

PO5: udevice.exe ooe1e00n

PO6: udevice.exe 03960006 000DOD00 DOD1000D DOBDOOOD
PO7: explorer.exe anaiooon

POB: EnulatorStub.exe 03b70006 BaB10000

PO9: servicesd.exe 03bFODBE pep1000D

Menory usage for Shared Heap:
70000000: —-----------====
70000 ---
TONZDOD0: WaWW

Hemory usage for Process “HK.EXE® pid hoooez

cOBBOBRE: -~ ———
cOiiddon: -CCCCCCCUMNNIYY
cOO20000: WWUWHAAARWWWWY

c

€O050800: -CCCCCCCOCHMME -~

cO060DDD: -----mmmmmmm—mee

P A L 11—
‘

Info on mi command:

http://msdn2.microsoft.com/en-us/library/aa935268.aspx

Module 3 - OS Internals

78

"f

kMemory Model (continued)

7

N

» mi Command Legend

Legend

A blank space indicates a virtual page that is not currently allocated. Does not require a physical page.

Reserved but not in use. Indicates a virtual page that is currently allocated but not mapped to any physical memory.
Does not require a physical page.

E Code pages in ROM. Does not require a physical page.
c Code pages in RAM. Requires a physical page.
S Indicates a virtual page that holds a stack. Requires a physical page.

Indicates a virtual page that is used to map a range of hardware addresses; that is, peripheral memory pages used to
P map target device memory by using VirtualAlloc.
Does not require a physical page. Peripheral memory may include frame buffer memory.

Indicates a virtual page that holds read-write data. Requires a physical page. Read-write pages include global variables

by as well as dynamically allocated memory.

o Indicates a virtual page that is used by the object store. Requires a physical page. Should only appear in the Filesys
process.

? Contents unknown.

> Read-only data pages in RAM. Requires a physical page. Read-only data primarily comes from data items that are
declared as a const type in the source code.

R Read-only data pages in ROM. Does not require a physical page. Read-only data primarily comes from data items that

are declared as a const type in the source code.

/ \

Info on mi command:

http://msdn2.microsoft.com/en-us/library/aa935268.aspx

Module 3 - OS Internals

79

’/

5 Operating System Internals

e

e System Architecture
e Memory Model
» Labs 3.1, 3.2, 3.3 — Using Memory Tools

and Thraardc

e Prpcassas
.a Lab Goals

1. Understand the use of the Remote Process
e SV Viewer for viewing information about
ol processes, threads, and modules

2. Become familiar with heaps in Windows
e In} Embedded CE
¢ Rd 3. Understand the use of the Threads and

Modules debug windows
4. Become familiar with the Remote Heap Walker
* Video

N\

Module 3 - OS Internals

80

-
N Operating System Internals

7

e System Architecture

e Memory Model

e Lab 3.1 - Using Memory Tools
» Processes and Threads

e Lab: ernel Tracker
o Synt * Processes

* Threads
* Lab . scheduler b

e Interrupt Viodel

e Review

Module 3 - OS Internals

81

Processes and Threads (continued)

Processes

A process is a single instance of an application that
provide the context within which one or more threads
execute

32K processes

Each process has 1G virtual space all its own

Processes:
http://msdn2.microsoft.com/en-us/library/aa908952.aspx

Module 3 - OS Internals

82

Processes and Threads (continued)

Threads & Scheduling
Each process has a primary thread and can have addition threads
. Each thread has it's own context (stack, priority, quantum, ...)

The kernel scheduler provides for efficient context switching between
threads and is priority based providing allowing for a predictable
sequence of execution

256 priority levels (0 through 255; 0 is highest priority)
Round robin scheduling for threads of the same priority
This is preemptive multitasking

No detection of thread starvation; highest priority that is ready to run,
will always run

Threads run until:
Quantum expires (and equal priority thread is ready to run)
Interrupted by a higher priority thread
Blocks by resource contention (mutex, critical section, other)
Sleeps
Terminates

Threads:
http://msdn2.microsoft.com/en-us/library/aa915094.aspx

Module 3: Operating System Internals 83

Scheduler — Quantum Time Slicing

| Thread 1P=0 | | l E

| Thread 2 P=052 | CE 3 g
[Thread 3 P=252 \ l:f D

{ Thread 1 ready to run Ouantum. Expires

t1 Quantum expires Thread 1 yields

e

Same priority threads run in round-robin fashion

¢« Switch threads when blocked

L

Switch threads after quantum has elapsed

*

Programmable quantum from 1 to N ms, default 100 ms

Windows Embedded CE 6.0 uses a priority-based time-slice algorithm to schedule the execution of threads.

Threads with the same priority run in a round-robin fashion: when a thread stops running, all other threads of
the same priority run before the original thread can continue. Threads at a lower priority run only after all
threads with a higher priority finish or are blocked. If one thread is running and a thread of a higher priority is
unblocked, the lower-priority thread is immediately suspended and the higher priority thread is scheduled.

A thread gets to run for set length of time, called a quantum
Typically 100 milliseconds
A quantum of 0 means the quantum never runs out
The thread can run until blocked or interrupted
OEMs can specify a different quantum.

A Thread runs until—
Its quantum runs out
It is interrupted by a higher priority thread
Its blocked by a resource contention, such as access to a critical section or a mutex

After a thread has used up its quantum, and if any thread with the same priority is ready to run, the current
thread is suspended and another thread is scheduled to run. The only exception to this is if a thread is a "run to
completion" thread, which means that the thread quantum is equal to 0. Threads with a quantum set to 0 will
never expire and will never be preempted by threads of the same priority. Threads that have a quantum set to
0 cannot be preempted except by a higher priority thread or an interrupt service routine (ISR).

Module 3 - OS Internals

84

p N\
X Processes and Threads (continued) y
- =

» Typical Priority Map

S I

0-96 Real-time drivers

97 - 152 Non real-time default drivers

153 - 247 Additional non real-time drivers

248 - 255 Applications and other non real-time priorities

i ®

Priorities:

http://msdn2.microsoft.com/en-us/library/bb202761.aspx

While this table shows the overall strategy for priorities in the system, taking the time to walk through the
priorities using a tool such as process viewer, looking at the threads of each process, can provide a better
understanding. While having a understanding of the priority of threads within a given process is important;
often times it is just as important to understand the priorities relative to other threads within the system.

Module O - Introduction

85

Thread Priority Map (Example)

7

Priority Component
0-19 Open - Real Time Above Drivers
20 Graphics Vertical Retrace
99 Power management Resume Thread
100-108 USB OHCI UHCI, Serial
109-129 IRSIR1, NDIS, Touch
130 KITL
131 VMini
132 CxPort
145 PS2 Keyboard
148 IRComm
150 TAPI
248 Power Management
249 WaveDev, Mouse, PnP, Power
250 WaveAP|
251 Normal
252-255 Open - Applications

N\

Module 3 - OS Internals

86

s N
Processes and Threads (continued)
. Y,
4 N
» Priority Inversion
« Corrects for - Lower priority thread, blocked by a medium
priority thread, while holding a resource needed by a high
priority.
+ Windows Embedded CE supports single level of priority
inversion to maintain hard real-time functionality.
« Avoid the need for priority inversion.
TR e
i"‘ :;Fsc;*;; ; ;aa £ B 6 B || ZomPegeist @ =] | T
Lol e e e v o

Priority inversion:

http://msdn2.microsoft.com/en-us/library/aa915356.aspx

One way to avoid the need for priority inversion is to understand the priority of the module that is being
developed in reference to the other threads in the system that it will be interacting with.

Priority Inversion

« Avoid priority inversion by keeping all threads waiting for
same resource at the same priority
Example: Thread 1 blocked waiting for resource owned by Thread 3, causing Priority Inversion
Priority Priority
Inversion Restored

High Priority Thread 1| Thread 3 || Thread 1| Blocked

Preempt

Medium Priority Thread 2 Thread 2 Blocked

__

Preempt Blocked ...
Low Priority | Thread 3 i IR Thread 3
Resource Owner: | Thread 3 ‘ Thread 1|

There are two primary architectural choices for an OS to handle Priority inversion in a system: Single Level and
Fully Nested. In the Fully Nested Mode the OS will walk through all threads blocked and keep boosting each one
until the high priority thread can run. This prevents an entire class of deadlocks. Unfortunately it also means an
O(n) operation with pre-emption turned off while the scheduler figures out how to get everything unblocked to
keep things going. This is a major problem for real-time systems that need deterministic response times.

In order to support hard real-time systems Windows CE V3.0 and later switched to using a Single Level handling
of priority inversion. That is the OS will boost only one thread to release a block. It is therefore the
responsibility of the developer to structure code such that deadlocks are avoided.

Module 3 - OS Internals

88

’f

.

Processes and Threads (continued)

o Process & Thread Tools

» Toolhelp.dll = module,
process, thread functions

Processes Window
Threads Window

°

L

®

Target Control Windows
gi proc
gi thrd
. gidelta
gi all

®

Kernel Tracker

Remote Process Viewer

L]

Windows CE Command Prompt (Alt-1) T

‘Wwindows CE>gi proc

PROC: Hame hProcess: CurAlY :dwUMBase:CurZone
POD: NK.EXE 80070000

PO1: shell.exe OBFS0002 0Q00DODD DODIOODD DODDOOOD
PO2: udevice.exe meennnz vamooen

PO3: udevice.exe 01F60002 00010000

PO4: udevice.exe 01150006 oaoio000

POS: udevice.exe 0a010000

PO6: udevice.exe BI96 0006 paa1000n

PO7: explorer.exe 00010008

POB: EnulatorStub.exe 03070006

PO?; servicesd.exe
Windows CE>gi thrd
PROC: Hame

THRD: State :hCurThrd:

o i ot o o i o o

POO: HK.EXE
Blockd B3500812
Blockd

LD
03bFOOBE QROOOBDE DO@10000

hProcess: CurAlY :dwUMBase

CurZone

hCurProc: CurAlY :Cp :Bp :Hernel Time

2007 0000

0040000R2 DODDODDD 251 251
249

Blockd 03840006
Blockd 037F0006
Blockd 83760006
Blockd B3410006
Blockd 03460006
Blockd 03420006
Blockd D3IIFDODG
Blockd

249
0400002 DOROOOOD 249 240
00400002 Q00000 249 249
00400002 DODDOODD 109 109
0p40R0eZ DRODOODD 251 251
DOLOD002Z DROODOOD 250 240
00400002 QRO0OOOD 249 240
00400002 DDOOBODD 251 251

51/81k

249 249

51/Blk 021b0006
Blockd B3F60002
Blockd 03c7oonz

249 249
@a400002 0OO000A0 251 251
GOs00002 00000008 251 251
0040002 0ODDODDD 251 251

Blockd
Blockd B35coonz
Blockd 03230002
Blockd 03150002
51/81k

251 281
0phoDpa2 DD0DODDR 132 132
00400002 DODDOODD 251 251
00400002 QOODODDD 251 251

120 120

Blockd
Blockd 02c60002
Blockd

251 251
00sDO0AZ DDOOODDD 251 251

Rlarkd 09970007
m

251 251
AALAANGT OOOOAAAR T4 ICA

00:00: 00,001
00:00:00.001
00:00:00. 001
00:00:00. 005
00:00:00. 004
00:00:00. 02°
00:00:00. 00t
00:00:00. 001
00:00:00. 001
00:00:00.00¢
00:00:00. 08¢
00:00:00.28¢
00:00: 00. 004
op:e0:e0.00
00:00:00.37¢
00:00:00.32¢
00:00:00. 00;
00: 0000006
00:00:00. 452 =
00:00:00.097
00:00:00. 00
00:00:00. 000 i
on-an-00 a0
»

/\

Module 3 -

OS Internals

89

s

N Processes and Threads (continued)

7

» Process & Thread Related APIs

.

CeGetCallerTrust
CeGetThreadPriority
CeGetThreadQuantum
CeSetThreadPriority
CeSetThreadQuantum
CeZeroPointer
CreateProcess
CreateThread
ExitProcess
ExitThread
FlushinstructionCache

GetCommandLine

This function retrieves the assigned trust level of a process.

This function gets the priority for a real-time thread.

This function gets the time quantum for the specified thread.

This function sets the priority for a real-time thread on a thread by thread basis.

This function sets the time quantum for the specified thread.

This function converts a pointer that is mapped to a process inte an unmapped pointer.
This function is used to run a new program

This function creates a thread to execute within the address space of the calling process.
This function ends a process and all of its threads.

This function ends a thread.

This function flushes the instruction cache for the specified process.

This function returns a pointer to the command-line string for the current process.

Module 3 -

OS Internals

90

s

N Processes and Threads (continued)

7

» Process & Thread Related APIs (continued)

o

GetCurrentProcess
GetCurrentProcessld
GetCurrentThread
GetCurrentThreadld
GetExitCodeProcess
GetExitCodeThread
GetProcessVersion
GetThreadTimes
OpenProcess
ReadProcessMemory

ResumeThread

This function returns a pseudo handle for the current process.

This function returns the process identifier of the calling process.

This function returns a pseudohandle for the current thread.

This function returns the thread identifier, which is used as a handle of the calling thread.
This function retrieves the termination status of the specified process.

This function retrieves the termination status of the specified thread.

Retrieves major and minor version of the system on which the specified process expects to run.

This function returns the priority value for the specified thread.
This function obtains timing information about a specified thread.
This function returns a handle to an existing process object.

This function reads memory in a specified process.

This function decrements a thread's suspend count.

Module 3 - OS Internals

| d Thread inued
Processes and Threads (continued)

o

/
» Process & Thread Related APIs (continued)

o

SetThreadContext This function sets the context in the specified thread.
SetThreadPriority This function sets the priority value for the specified thread.
Sleep This function suspends the execution of the current thread for a specified interval.
SuspendThread This function suspends the specified thread.
TerminateProcess This function terminates the specified process and all of its threads.
TerminateThread This function stops the specified thread.
ThreadProc This function is an application-defined function that serves as the starting address for a thread.
TlsAlloc This function allocates a thread local storage (TLS) index.
TisFree This function releases a thread local storage (TLS) index, making it available for reuse.
TlsGetValue Retrieves the value in the calling thread's thread local storage (TLS) slot for a specified TLS index.
TisSetValue Stores a value in the calling thread's thread local storage (TLS) slot for a specified TLS index.
WriteProcessMemaory This function writes memory in a specified process.

Module 3 - OS Internals

92

rf

5 Operating System Internals

//

e System Architecture

e Memory Model
e Labs 3.1, 3.2, 3.3 — Using Memory Tools

e Processes and Threads

» Lab 3.4 - Exploring Threads with Kernel Tracker

e Sy
ela
e Inj
e Re

* Lab Goals
1. Learn which build options are necessary to work
with the Remote Kernel Tracker
2. Become familiar with the Remote Kernel Tracker
menu
3. Recognize execution patterns in Kernel Tracker
* Video

AN

Module 3 - OS Internals

4 N
5 Operating System Internals)
a N

e System Architecture

e Memory Model

e Lab 3.1 - Using Memory Tools

e Processes and Threads

e Lab 3.2 — Exploring Threads with Kernel Tracker
» Synchronization Objects

e Labh3 3 -0 lank at Sunchranizatian
* Synchronization Mechanisms
* Critical Sections
e Ré * Mutexes
* Semaphores
* Events
* Interlocked Functions
* Point to Point Message Queues

A ®

e |n]

Very often when using multiple threads in a system there is a need for some type of synchronization. Here we
will explore the synchronization objects available within Windows Embedded CE.

Module 3 - OS Internals

-
kSynchronization Objects (continued)

7

AN

o Critical Sections
« Protects a section of code with exclusive access

+ Limited to single process

Other threads blocked until ownership is released
More efficient than mutex
» Can be used in the OAL

DeleteCriticalSection This function releases all resources used by a critical section object that is not owned.
EnterCriticalSection This function waits for ownership of the specified critical section object.
InitializeCriticalSection This function initializes a critical section object.

LeaveCriticalSection This function releases ownership of the specified critical section object.
TryEnterCriticalSection This function attempts to enter a critical section without blocking.

N J

Critical Sections:

http://msdn2.microsoft.com/en-us/library/aa910712.aspx

One example of critical section use would be a driver allows multiple threads access to a hardware register that
requires a sequence of writes.

Module 3 - OS Internals

4 N
kSynchronization Objects (continued)

//

AN

o Mutexes
» Allows a single thread to have ownership
» Named mutexes permit inter-process synchronization

« Signaled when not owned

ReleaseMutex This function releases ownership of the specified mutex object.

CreateMutex This function creates a named or unnamed mutex object.

WaitFarMultipleObjacts This function returns when either any one of the specified objects is in the signaled state, or the
L e e time-out interval elapses.

This function returns when the specified object is in the signaled state or when the time-out

WaitForSingleQbject -
interval elapses.

i ®

Mutexes:
http://msdn2.microsoft.com/en-us/library/bb202813.aspx

MsgWaitForMultipleObjects(Ex) should be used in place of the other wait functions for threads that need to
process windows messages as well.

DuplicateHandle() allows for creating a handle that can be used for the same event in another process space.
All types of handles can be duplicated with Windows Embedded CE 6.0.

Module 3 -

OS Internals

96

s

kS\mchronization Objects (continued)

7

e

» Semaphores
» Limits the number of threads using a protected resource
» Named semaphores allow inter-process use

« Signaled when count >0

ReleaseSemaphore This function increases the count of the specified semaphore object by a specified amount.
CreateSemaphore This function creates a named or unnamed semaphore object.

WaitFarMultipleObjacts This function returns when either any one of the specified objects is in the signaled state, or the
L e e time-out interval elapses.

This function returns when the specified object is in the signaled state or when the time-out

WaitForSingleObject .
interval elapses.

J &

Semaphores:
http://msdn2.microsoft.com/en-us/library/aa909242.aspx

Module 3 - OS Internals

97

s

kS\mchronization Objects (continued)

7

CreateEvent
OpenEvent

PulseEvent

ResetEvent

SetEvent

e

» Events
« Object that is either signaled or reset
» Two types

. Manual Reset Events
. Auto Reset Events

« Named events allow easy inter-process use
» Use Wait functions to wait on event

_ Description

This function creates a named or an unnamed event object.

This function opens an existing named event object.

This function provides a single operation that sets to signaled the state of the specified event
object and then resets it to nonsignaled after releasing the appropriate number of waiting threads.

This function sets the state of the specified event object to nonsignaled.

This function sets the state of the specified event object to signaled,

J &

Events:

http://msdn2.microsoft.com/en-us/library/aa915075.aspx

Module 3 - OS Internals

4 N
\Synchronization Objects (continued)

N\

» Comparison of Auto and Manual Reset Events

Manual Reset Events Auto Reset Events

Signaled with SetEvent Signaled with SetEvent
1. Kernel releases all waiting threads 1. Kernel releases single waiting thread
2. Kernel releases all subsequently waiting 2. All remaining and subsequently waiting
threads threads are blocked
3. Event must explicitly be set to non- 3. Kernel automatically transitions event to
signaled with ResetEvent non-signaled state - remains signaled
until single thread is released
Signaled with PulseEvent Signaled with PulseEvent
1. Kernel releases all waiting threads 1. Kernel releases at most one waiting
thread
2. Kernel automatically transitions event to 2. Kernel automatically transitions event to
non-signaled non-signaled - even if no thread has

been released

i ®

Events:

http://msdn2.microsoft.com/en-us/library/aa915075.aspx

This table provides a quick reference to the options for events. As we said there are two types of events, auto
and manual. There are also two methods for triggering events, PulseEvent and SetEvent.

Module 3 - OS Internals

99

Synchronization Objects (continued)

Interlocked Functions
Support atomic read/write/modify operations on data

Does not require overhead of other synchronization
objects

Must be 32 bit aligned

Interlocked functions:
http://msdn2.microsoft.com/en-us/library/aa911383.aspx

Module 3 - OS Internals 100

-
kSynchronization Objects (continued)

A N
» Interlocked Function APIs

This function performs an atomic comparison of the specified parameter values and
exchanges the values based on the outcome of the comparison.

InterlockedCompareExchangePointer

This function both decrements (decreases by one) the value of the specified 32-bit

InterlockedDecrement H 5
drQtckeC eI IR, variable and checks the resulting value.

InterlockedExchange This function atomically exchanges a pair of 32-bit values.

This function performs an atomic addition of an increment value to an Addend

InterlockedExchangeAdd z
variable.

InterlockedExchangePointer This function atomically exchanges a pair of values.

This function both increments (increases by one) the value of the specified 32-bit

Interlockedincrement 3 R
Eimtelial B variable and checks the resulting value.

This function is an interlocked function that performs a conditional setting of a

InterlockedTestExchange 7
variable.

This function performs an atomic comparison of the specified values and exchanges

InterlockedCompareExchange :
InterlockedComparetxchange the values based on the outcome of the comparison.

N J

Interlocked functions:
http://msdn2.microsoft.com/en-us/library/aa911383.aspx

Module 3 - OS Internals 101

-
kS\mchronization Objects (continued)

7

AN

» Point to Point Message Queues

« Writable queue handles are signaled whenever the queue is
not full

« Readable queue handles are signaled if the queue is not empty
» Supports high priority and alert messages
« Use Wait functions to wait on a queue

N

CreateMsaQueus Creates or opens a user-defined message queue.

OpenMsgCiels Opens a handle to an existing message queue.

CloseMsaQueus Closes an open message queue,

ReadMsgQueus Reads a single message from a message queue.
WriteMsgQueue Writes a single message from a message queue,
GetMsgQueuelnfo Returns information about a message queue,

N J

http://msdn2.microsoft.com/en-us/library/aa909023.aspx

Module 3 - OS Internals

102

rf

5 Operating System Internals

//

e System Architecture

e Memory Model

e Lak
e Prd
e Lal

e Syii

* Lab Goals

1
2:

e \Video

Understand the read/modify/write vulnerability
Be able to implement an atomic read/modify/write
sequence using a critical section

o Labs 3.5, 3.6 — A Look at Synchronization

e Interrupt Model

e Review

AN

Module 3 - OS Internals 103

e R
X Operating System Internals)
4 N

e System Architecture
e Memory Model

e Lab 3l —Lising Memorv Togls
* Basic Model
* Hardware triggers Kernel Interrupt Handler which
e Lab calls ISR
e Synd * ISR returns ID

* Kernel schedules IST associated with ID
® Lab fo e ™M LUURN Ol JYIILIIIUI!ILCILIUII

e Proc

» Interrupt Model

e Review

i ®

Interrupts landing page:
http://msdn2.microsoft.com/en-us/library/bb201995.aspx

Module 3: Operating System Internals

104

Interrupt Model

Event

E—
Y|

KERNEL.DLL
Exception Handler

N\

(=]

= a

£ £

= &

= £

Device | | Interrupt Service Routine (ISR) ‘

Interrupt Processing

Device raises registered hardware interrupt

Interrupt
Service
Thread
(IST)

Kernel gets exception, calls associated Interrupt Service Routine (ISR)

. Interrupt Service Routine (ISR) quickly deals with pending interrupt

Interrupt Service Thread (IST) in driver is signaled to process interrupt

Real-time applications use interrupts to respond to external events in a timely manner. To do this, Windows

Embedded CE 6.0 breaks interrupt processing into two steps: an interrupt service routine (ISR) and an interrupt
service thread (IST). The ISR runs immediately to identify and mask the interrupt, and perform any high priority
tasks. The corresponding IST is a normal system thread (although typically of high priority) and can perform the
bulk of the handling that is not time critical. This two stage model allows the operating system to maximize the
amount of time the system is able to respond to other high priority interrupts.

The kernel is able to handle a total of 64 interrupts from external sources, some of which are predefined (e.g.
system timer interrupt, real time clock etc). Devices that have more than 64 interrupt sources that need to be
exposed (rare) must implement a mechanism to share interrupt identifiers. Typically this is done by
multiplexing related interrupts together in the ISR, and demultiplexing them in the IST.

Module 3: Operating System Internals

105

Interrupt Model (continued)

oo

10.
11,

12,
13,

14,
15
16.

Interrupt Sequence

OAL hooks ISR to interrupt source using Hookinterrupt API

Driver spawns Interrupt Service Thread (IST)

Driver creates an event to be used to signal thread when
interrupt occurs

IST calls Interruptinitialize with SYSINTR ID and event handle
Kernel associates SYSINTR ID with event

Kernel calls OAL's OEMInterruptEnable function to enable the
interrupt

IST calls WaitForSingleObject on interrupt event

Hardware device raises IRQ

Kernel exception handler is triggered and disables all interrupts at
an equal and lower priority

Hooked ISR is called by kernel exception handler

ISR identifies interrupt and returns SYSINTR ID to kernel exception
handler

Kernel sets interrupt event associated with the SYSINTR ID

IST waiting for interrupt event is scheduled based on priority by
the kernel scheduler

IST processes interrupt
IST calls InterruptDone

Kernel calls OAL's OEMInterruptDone function to re-enable the
interrupt

Driver
IST
OAL
Kernel
Interrupt
ISR € Handler
Interrupt
Registers
Hardware

Kernel

IRQ

Real-time applications use interrupts to respond to external events in a timely manner. To do this, Windows

Embedded CE 6.0 breaks interrupt processing into two steps: an interrupt service routine (ISR) and an interrupt
service thread (IST). The ISR runs immediately to identify and mask the interrupt, and perform any high priority
tasks. The corresponding IST is a normal system thread (although typically of high priority) and can perform the
bulk of the handling that is not time critical. This two stage model allows the operating system to minimize the
amount of time the system is able to respond to other high priority interrupts.

Interrupt processing:
http://msdn2.microsoft.com/en-us/library/aa930251.aspx

Module 3: Operating System Internals

106

’f

. Interrupt Model (continued)

L]

L

[]

®

¢ Interrupt Request (IRQ)

Hardware identifier indicating
interrupt source

Interpretation is specific to BSP

Could map to multiple SYSINTRs
(shared interrupts)

» SYSINTR ID

Software identifier indicating
interrupt source

Might be hard coded into driver
(non portable)

Mapped to a single IRQ by the OAL

Associated with Event object by
Interruptinitialize

Returned by ISR to kernel to
trigger event

Driver

=]
ey

J €

ISR

Kernel

j Interrupt
Handler

Kernel

Interrupt
Registers

Hardware

I IRQ

Module 3: Operating System Internals 107

Interrupt Model (continued)

Interrupt Service Routine (ISR)
Function(s) in the OAL pa—
Registered to an IRQ

IST

Called by Kernel Interrupt

Handler
Identifies interrupt source DAL | Kernel
Kerne

and returns Interrupt ID to S
kernel ISR : Handler

Minimal processing; typically
identify and mask interrupt
Interrupt IRQ

Written to run quickly Registers
without dependencies

Hardware

An interrupt service routine (ISR) is code that handles interrupt requests (IRQs) on your target device. The ISR is
responsible for identifying an interrupt source, masking it, and returning a unique identifier to the Windows
Embedded CE 6.0 kernel. The ISR can optionally perform other tasks that are time critical, but should be
limited to those tasks that are absolutely necessary. Time spent in the ISR is time that other IRQs of lower
priority are not able to be serviced.

CPU architectures that have more than one hardware IRQ require the developer to register ISR routines for
each IRQ source. This is done at system initialization before interrupts are enabled. An IRQ can have only one
ISR, but the same ISR can be registered for more than one IRQ. CPU architectures that have only a single IRQ
source (ARM) do not need to register an ISR with the kernel.

ISR landing page:
http://msdn2.microsoft.com/en-us/library/aa930802.aspx

Module 3: Operating System Internals 108

Interrupt Model (continued)

Interrupt Service Thread (IST)

Created by Device Driver using
CreateThread API Driver

Creates Event and associates with
SYSINTR ID using Interruptlnitialize IsT
API

Typically IST loop blocking on

event using WaitForSingleObject oAl vernel

Usually runs at higher priority set Kernel
by CeSetThreadPriority > Interrupt

ISR - Handler
Event signaled by kernel when ISR
returns corresponding Interrupt ID

Performs bulk of processing

necessary to handle interrupt
Interrupt IRQ

Calls InterruptDone to unmask Registers
interrupt Hardware

The interrupt service thread (IST) is a device driver thread that does most of the interrupt processing. The
device driver associates a synchronization event object with the desired interrupt identifier and registers them
with the kernel during initialization. The IST thread in the driver then waits for the event object to be signaled
by the kernel, indicating that the corresponding interrupt identifier was returned by an ISR. The IST thread
performs whatever processing is necessary to complete the interrupt processing, then notifies the kernel and
waits for the event to be signaled again.

The IST is just a thread running inside of a driver. It typically runs at above normal priority based on the needs
of the device and other system requirements. The IST is different from other threads that might be running
inside the driver only in that it is handling a particular synchronization event that is registered in the kernel with
an interrupt identifier.

IST processing:
http://msdn2.microsoft.com/en-us/library/aa930165.aspx

109

Interrupt Processing

 IST Latency P —
| ISR Latency s Interrupt o
Interrupt __Shared memory ~Service >
Sariica @=ssssnssnn=sPp Thread =
{ r'y
] Routines: ~interrupt ID Event | InterruptDone()
I (SYSINTR)
: Interrupt Set = Scheduler Enable @
: Service Event ID 5
: Handler -
A
IRQ EOI =
Al Higher All Enabled RQRe- ®
Disabled Priorities except IRQ that enabled b=
Enabled caused interrupt =1

Interrupt processing works as follows:

1) The hardware generates an interrupt request (IRQ)

2) The Interrupt Service Handler is the target for all interrupts and exceptions. It operates with
interrupts off. The support handler sets up the stack etc.. For the “C” callable ISRs and
determines the appropriate ISR to call (on ARM processors there is only one ISR)

3) The ISR examines the hardware to determine if it is a valid interrupt and returns the logical ID for
the interrupt (SYSINTR_xxx) or SYSINTR_NOP. If shared interrupts are allowed for this IRQ then
the ISR MUST call NKCallIntChain() which will return the appropriate logical ID or SYSINTR_CHAIN
if no device claims the interrupt. The ISR typically disables the interrupt for this IRQ at the
interrupt controller to prevent further interrupts until processing is completed.

4) The interrupt support handler looks up the SYSINTR in an internal table to see if there is an event
associated with that ID. If there is it sets that event so the scheduler may schedule the IST waiting
on it when the IST is the highest priority runnable thread.

5) The interrupt support handler re-enables interrupts for all interrupts

6) The system continues; once the IST associated with the IRQ is the highest priority runnable
thread the scheduler switches to it. To process the Interrupt

7) The IST exits it's WaitForSingleObject() call on the interrupt event and processes the interrupt. It
should minimally clear or disable the interrupt at the device then call InterruptDone() before
further processing.

8) InterruptDone() re-enables the IRQ at the interrupt controller for other interrupts to occur. This
is why it should be called as soon as possible since other devices sharing the interrupt are
blocked.

9) The IST continues processing and clears and re-enables the interrupt at the device and goes back
to wait for another interrupt.

Module 3: Operating System Internals 110

Interrupt Model (continued)

Shared Interrupt Support
Several devices share the same interrupt line
Multiple ISRs chained to handle the shared interrupt

Each ISR, in turn, determines if it owns the interrupt,
hence implying priority
If owner - ISR returns the appropriate SYSINTR value or
SYSINTR_NOP if no further processing is necessary

If not owner - The ISR return SYSINTR_CHAIN to cause
NKCalllntChain to call the next ISR in the chain

Shared interrupts:
http://msdn2.microsoft.com/en-us/library/aa929742.aspx

The ISR routine hooked to an interrupt in OEMInit must call NKCalllIntChain, a kernel function, to examine a list
of installed ISRs for the interrupt that has been signaled.

If the first ISR determines that its associated device has asserted the interrupt:
It performs any necessary work, and then returns the SYSINTR mapped to the interrupt.
- or' -

If the ISR decides that no further processing by the IST is necessary, it returns SYSINTR_NOP.

If the ISR determines that its associated device has not asserted the interrupt, it returns SYSINTR_CHAIN, which
causes NKCalllntChain to call the next ISR in the chain.

Module 7 - Drivers 111

Interrupt Model (continued)

Installable ISRs

Allows a driver to install an ISR at run time
Supports driver installation after image creation
OAL agnostic to device(s) using IRQ

OALs ISR must support interrupt chaining on that IRQ by calling
NKCalllntChain

Loaded into kernel with LoadIntChainHandler
Typically used for shared interrupts

Supports custom functionality in ISR
Example: High speed serial port driver

All code must be contained in the DLL and cannot have dependent
DLLs

Cannot link implicitly to other DLLs
NOMIPS16CODE=1

Must disable C run time library
NOLIBC=1

Windows Embedded CE also supports the concept of installable ISRs. Installable ISRs have the advantage of
being loaded dynamically at run time. This allows device drivers to install a custom ISR themselves without
depending on some other entity to build that ISR in to the kernel. Installable ISRs still require that there be a
static ISR built into the kernel registered for the IRQ. The static ISR is responsible for notifying the kernel to
walk the list of installable ISRs, and returning any interrupt identifier that comes out. However the static ISR
may not have any knowledge of the devices that are hooked to the IRQ. This gives the OEM the opportunity to
support any future device that might be installed to use the IRQ.

Installable ISRs are often used to support interrupt sharing, where a single IRQ is used to support multiple
external devices. One example of interrupt sharing and installed IRQs is the PCl bus. The PCl bus is an
expansion bus that has an interrupt specification allowing multiple devices to use the same IRQ. In addition,
virtually any kind of hardware could be implemented on the PCl bus, making it impossible to write a static ISR
that is aware of all the possible devices. PCl drivers use installable ISRs to overcome this limitation. The driver
notifies the kernel to use a particular function in association with a particular IRQ, and the interrupt identifier
that should be associated with it. The static ISR handler in the OAL calls into the installed ISRs, and the first one
to recognize the device as their own returns the associated interrupt identifier. The static ISR returns that to
the kernel, which notifies the IST just like any other driver.

Shared interrupts:
http://msdn2.microsoft.com/en-us/library/aa929742.aspx

Module 7 - Drivers

112

Interrupt Model (continued)

Microsoft supplied generic installable ISR (GIISR)
Suitable for many devices
Reads register to determine interrupt status

Configurable
Register/Port address
Register/Port size
Memory vs. 10
Mask

Module 3: Operating System Internals

113

-

kInterrupt Model (continued)

7

» Interrupt Related APIs

N

HookInterrupt

InterruptDisable

InterruptDane

InterruptiMask
INTERRUPTS ENABLE

INTERRUPTS OFF
INTERRUPTS ON
ISRHandler
KernellibloControl

SetinterruptEvent

Unhookinterrupt

LoadintChainHandler

NKCallintChain

Registers an ISR with the kernel for a specific IRQ line value.

This function disables a hardware interrupt as specified by its interrupt identifier.

This function signals to the kernel that interrupt processing has been completed.

Initializes a interrupt with the kernel allowing a driver to register an event and enable the interrupt.
This function masks hardware interrupts.

This function enables and disables all interrupts based on the argument and returns the current state.
This function disables all interrupts.

This function enables all interrupts.

This function prototype is used by an OEM/IHV to create and export an installable interrupt handler.
This function is called from a driver to communicate with an interrupt handler.

This function allows a device driver to cause an artificial interrupt event.

This function deregisters an ISR with a specific hardware interrupt.

Called by a driver to install an ISR for a interrupt chain into the kernel

Called by the OAL to support shared and installable interrupts.

Module 3 - OS Internals 114

4 N
N Operating System Internals)
e N\

e System Architecture

e Memory Model

e Lab 3.1 - Using Memory Tools

e Processes and Threads

e Lab 3.2 - Exploring Threads with Kernel Tracker
e Synchronization Objects

e Lab 3.3 — A Look at Synchronization

e Interrupt Model

» Review

Module 4 - Components

115

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

Operating System
Components

Module 4 - Components

116

p
N Course Outline

“

7

e Module 1:
e Module 2:
e Module 3:
» Module 4:
e Module 5:
e Module 6:
e Module 7:
e Module 8:
e Module 9:
e Module 10:

e Course Introduction

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development
Testing & Verification

e Course Review

Module 4 - Components 117

Operating System Components

' The File Systems

The Registry
» Lab 4.1 — Using the Remote Registry Editor

Power Management

Lab 4.2 - Experimenting with Power Management
» Internationalization

» Review

Module 4 - Components 118

Operating System Components

The File Systems

* A number of file system drivers “out of the box”
, » Several types of FAT
| « Utility APIs &
| * RAM (Object Store) =
| + CD/UDFS
|+ BinfS
* RELFSD
' *» Support for 3rd party file systems
'+ Support for databases including SQL-CE
* Support for file system filters &
* Robust security features
* Single hierarchical namespace rooted at “\” with RAM
FS or optional FS mounted at the root
* No drive letters; no current directory
* Managed by FSDMGR.DLL

UDFS - The Universal Disc File System (UDFS) and the Compact Disc File System (CDFS) are used to read
compact discs (CDs), digital video discs (DVDs), and CD-ROMs. For navigating and audio/video playback, CDFS
uses the ATAPI block driver, and UDFS uses the USB block driver or the ATAPI block driver.

BinFS - The binary ROM Image File System is a file system that reads the binary image (.bin) file format
generated by Romimage.exe. The .bin file format organizes data into specific sections. Each section contains a
section header that specifies the starting address, length, and checksum values for that section. Romimage.exe
writes data organized by logical sections, such as an application's text or .data region, to the .bin file.

You can create your own specialized file system. For example, you can use installable file systems to take
advantage of special functionality provided by a new type of storage hardware or to restrict what you can do
with the files on standard PC Card storage hardware.

http://msdn2.microsoft.com/en-us/library/aa914412.aspx

Extended File Allocation Table (exFAT) is a new file system that better adapts to the growing needs of mobile
personal storage. The exFAT file system not only handles large files such as those used for media storage, it
enables seamless interoperability between desktop PCs and devices such as portable media devices so that files
can be easily copied between desktop and device. In addition, exFAT can be adopted with minimal effort; exFAT
encapsulates standard FAT and TFAT functionality.

The exFAT system offers the following advantages:

Enables the file system to handle growing capacities in media, increasing capacity to 32GB and larger

Handles more than 1000 files in a single directory

Speeds up storage allocation processes

Removes the previous file size limit of 4GB

Supports interoperability with future desktop operating systems

Provides an extensible format, including OEM-definable parameters to customize the file system for specific
device characteristics

In addition, you can choose to add support for TFAT to your exFAT implementation to ensure transaction-safe
operations. As of Windows Embedded CE 6.0 and later, TFAT can only be supported in an exFAT environment.

Module 4 - Components

119

s

kThe File Systems (continued)

7

DefragVolume

DefragVolumeUl
FormatVolume

FormatVolumelUl
ScanVolume

ScanVolumeUl

e

« FAT Utility APIs

N

Defragments files on a volume and removes any free space in fragmentation. It
calls scan disk first to verify volume is free from errors.

Defragments a volume according to the options specified. It contains a dialog box
user interface that can be displayed standalone or invoked from another place
such as a control panel window.

Formats a volume according to the options specified.

Formats a volume according to the options specified. It contains a dialog box user
interface that can be displayed standalone or invoked from another place such as
a control panel window.

Scans a volume for errors in the FAT and directories, and for lost clusters
according to the options specified.

Scans a volume according to the options specified. It contains a dialog box user
interface (Ul) that can be displayed alone or invoked from another place, such as
a control panel window.

http://msdn2.microsoft.com/en-us/library/aa911938.aspx
This table shows a list of FAT related utility APIs.

Module 4 - Components 120

The File Systems (continued)

RAM Object Store
The File System is used to access RAM based files
The Registry is similar to the desktop registry

The Database can be used to store small property set
records, a contact list for example

The object store in Windows Embedded CE provides persistent storage for applications and their related data
even when the main power supply is lost, provided there is a backup power supply. One or more memory
storage chips, which typically are nonvolatile RAM chips, compose the physical object store.
Although file systems, databases, and the system registry share a single memory heap, they do not necessarily
reside physically in the object store. They can reside in ROM, on separately installed systems, or on an external
device, such as a flash memory device. Data is created and retrieved according to the storage type,
independent of the actual storage device.
The operating system uses the object store to perform the following tasks:

Manage the stack and memory heap

Compress and expand files as necessary

Seamlessly integrate ROM-based applications and RAM-based data

Both the File System and the Registry will be discussed in more detail.
The built in flat database has some limited use and is sometimes called the Property database as it stores flat
property-set records. The Windows Embedded CE database (CEDB) model is that of a small, flat structure and is
designed for small, efficient storage. As such, the CEDB APIs do not correspond to the Win32 database APIs.
Data operations are processed within the object store or a database volume, which protects against data loss. If
a Windows Embedded CE—based device loses power during a data transaction, Windows Embedded CE reverts
all partial database operations to the last known good state. A file system that stores a database volume still
has the ability to corrupt the volume.
The default database for Windows Embedded CE is CEDB.
Windows Embedded CE also includes support for the embedded database (EDB), which enhances the
functionality of CEDB and includes support for:

Transactions.

Access by multiple users.

Multiple sort orders, key properties, and databases.

Enhanced performance, especially with larger databases.

Object Store:
http://msdn2.microsoft.com/en-us/library/aa910544.aspx

Module 4 - Components 121

The File Systems (continued)

RAM (Object Store)
Transaction based
Maximum size 256 MB
Max file size 32MB

About 4 million objects

Object Store:
http://msdn2.microsoft.com/en-us/library/aa910544.aspx

Module 4 - Components 122

The File Systems (continued)

Support for file system filters
Like a shim file system driver

Examples
Virus scan
Encryption
Security Access
Compression
Statistics
Performance Caching

A file system filter is a dynamic-link library (DLL) that exports file system entry points. These entry points map to
the standard file system functions, such as CreateFile and CreateDirectory. Because file system filters sit on top
of the file system and intercept file system calls, you can use this mechanism to encrypt, compress, or virus
scan any file service manager (fsdmgr) loaded file system. Multiple filters can exist on any fsdmgr loaded file
system performing any combination of file manipulation before the file system sees the call.

File system filters:
http://msdn2.microsoft.com/en-us/library/aa918566.aspx

Module 4 - Components 123

The File Systems (continued)

File System Architecture

FSD Manager

Filter Object Store
File System Registry
Partition Driver H Database
Block Driver RAM File System
Hardware

FSD Manager controls most everything related to file access, no matter where the files are stored.
“Registered File Systems”

The Object Store (RAM) File System

The ROM File System.

Release-Directory File System (RELFSD)

“Installable File Systems” - Allow the developer to extend the OS.

The internal file system in your target device controls access to ROM. The file system can also provide file
storage in the object store, which is in RAM. Two internal file system options are available: the RAM and ROM
file system and the ROM-only file system. These have different properties and you will want to select the
correct one for your target device. Both internal file systems provide the ability to mount additional external
file systems, such as file allocation table (FAT).

The RAM and ROM file system provides file storage in the object store, as well as access to the ROM. The object
store is the root of the file system, and all data under the root is stored in the object store, with the exception
of external file systems, which are mounted as directories under the root. Data in ROM is accessible through
the Windows directory. The RAM and ROM file system is most useful in target devices that continuously power
RAM because the object store is lost when RAM is not refreshed.

The ROM-only file system does not allow applications to place files in the object store. Data in ROM is
accessible through the Windows directory, and external file systems are again mounted as directories under
the root. Additionally, with the ROM-only file system, you have the option of choosing an external file system to
be placed at the root of the file system. If you mount a file system as the root, all data below the root directory
is stored in that file system, with the exception of other external file systems.

Select ROM+RAM file system if you want to use the Object Store RAM file system.

Select ROM-only file system if you don’t want to use the Object Store RAM file system even if you don’t want to
mount is as the root of the file system.

The Object Store file system driver is implemented in FILESYS.DLL.

Module 4 - Components

124

The File Systems (continued)

Multiple File Systems & Filters

FSDMGR
Filter(s)
1
[| 1
FATFS UDFS RELFSD
MSPART KITL
PCMCIA _FLATRELEASEDIR
ATAPI

It is possible to have multiple file systems as well as multiple filters on a single system.

RELFSD — Release-Directory File System (RELFSD) This is the Platform Builder release directory file system

driver for development use.

The Release Directory File System Driver (Relfsd) was created for development environments. Relfsd mounts
the release directory on the development workstation (set by _FLATRELEASEDIR) to "\release' on the device, so
that any I/O operations to the "\release' directory are routed to the 'release' directory on the development
workstation. In development environments, if the LoadLibrary function cannot find an executable module on
the device; it searches for the module in the directories specified by a registry setting. By default, the directory
is set to \release for development images.

KITL — (Kernel Independent Transport Layer) Used to communicate to between the development workstation

and the target CE device.

Module 4 - Components

125

7

5 Operating System Components

7

N

e The File Systems

» The Registry

A _4 Lio2 bl | =] R D

e

E.lla

e Lal
e POy
e Lali
e Int

e Re)

* OQverview
* Types
* Hive
* RAM
* Registry Tools

* Registry APIs

hlagement

AN

http://msdn2.microsoft.com/en-us/library/aa912217.aspx

Module 4 - Components 126

The Registry (continued)

Overview
Similar to desktop Windows Registry

Hierarchical trees
Base of each is root using well known HKEY value

HKEY_CLASSES_ROOQT - Stores file type matching and OLE
configuration data

HKEY_CURRENT_USER - Stores user-specific data for the user
who is currently logged in (alias for user under HKEY_USERS)

HKEY_LOCAL_MACHINE - Stores machine-specific data for
device drivers and applications

HKEY_USERS - Stores data for all users including a default user
Branches called “keys”
“Keys” contain subkeys or entries
Entries are stored as name/value pairs

The registry is a system database that stores configuration information for applications, drivers, and the
operating system (OS). The registry is most commonly use for storing state information across invocations. For
example, an application might have windows that a user can move and resize. Before exiting, the application
could store its windows information in the registry. Then when the application starts again, it could retrieve the
information and position its windows accordingly.

The basic piece of data that is stored in the registry is called a value. A value can be a variety of types, including
string or binary. Each value has a name and an associated piece of data. For example, a device that is running

the Windows Embedded CE Handheld PC, Professional Edition, software uses the value name Wrap to Window
in the HKEY_LOCAL_MACHINE\Software\Microsoft\Pocket Word\Settings key to store an integer piece of data.

http://msdn2.microsoft.com/en-us/library/aa912217.aspx

Module 4 - Components 127

The Registry (continued)

Types

Hive based
Default type
Support multiple users
Non volatile
Requires flush to hive

RAM based
Very simple to configure
No support for multiple users
Natively volatile (can be made non volatile)

There are two registry options you can use to select the registry for your target device:
Hive-based registry

RAM-based registry

In Windows Embedded CE 6.0, the registry is hive-based by default.

Hive-based

The Hive-Based Registry stores all registry data in files, also called hives, which can be located on any file
system. This allows OEMs to easily persist the registry across cold boots without powering RAM.

The hive-based registry also provides separate user hives so registry configurations can be customized
differently for each user. A multi-user system will contain several user hives. A user's hive can be mounted on
logon and unmounted on logoff.

RAM-based
The RAM-Based Registry stores all registry data in the object store, which is in RAM. Therefore, registry data

persists on warm boots but not on cold boots.

This key stores information about how the registry is configured in of all places, the registry.
HKEY_LOCAL_MACHINE\init\BootVars

http://msdn2.microsoft.com/en-us/library/aa910532.aspx

Module 4 - Components

128

-
kThe Registry (continued)

7

%

» Registry Tools
» Registry File Editor

» Remote Registry Editor

_ common.eg | Start Page
| [(3 HKEY_CLASSES_RODT

[iDetautt n;-w-fvu!;_locn_;_uw;rﬂi\pﬂ =

{# 23 HKEY_CURRENT_USER Hawe Tie Dt
& £ HKEY-LOCAL MATHINE &) (Defau) REG_SZ value ot set
= > 5] Depend20 REG_BINARY Oa00
&) Depend30) REG_BINARY 1400
5] Dependtl) REG_BINARY 1400
&) Depend®d REG_BINAFY 1400
3] Launchl5 REG_SZ CelogFhush exe
K Windiws CE Remote Registry Editor &) Launchlls REG_SZ O5Caphune ewe
I Edt View Lo &) Leunch10 REG_SZ shellexe
Py y &) Launch20 REG_SZ device. dl
Bl || 5] Launch30 REG_SZ gwes.dl
8 My Computer 2] LaunchE REG_SZ senvicerStat exe
-~ ?'IHH#YD?L:SQS_MDT 8] Launctis Re6sZ biuene
HVEY_CURBENT_UUSER
HIEY_LOCAL MACHINE
® & Comm
£ Controttanel
% 0 Drvens
% 13 Explore un
B Py
= ot
= 23 init Cided
22 Bootars
= Loader

http://msdn2.microsoft.com/en-us/library/aa936059.aspx

Module 4 -

Components

129

-
kThe Registry (continued)

7

%

» Registry Related APIs

ReadGenericData
ReadRegData

RegCloseKey

RegCopyFile

RegCreateKeyEx

RegDeleteKey
RegDeleteValue
RegEnumKeyEx
RegEnumValue
RegFlushKey
RegistryOperation

This function is used to read OS password data.
Reads a registry file into RAM from persistent storage as defined by the OEM.
This function releases the handle of the specified key.

This function saves a copy of the current Windows Embedded CE RAM-based registry
to a specified file.

This function creates the specified key. If the key already exists in the registry, the
function opens it.

This function deletes a named subkey from the specified registry key.

This function removes a named value from the specified registry key.

This function enumerates subkeys of the specified open registry key.

This function enumerates the values for the specified open registry key.

This function writes all the attributes of the specified open registry key into the registry.

This function performs a series of registry operations.

AN

Registry related functions:

http://msdn2.microsoft.com/en-us/library/aa914389.aspx

Module 4 -

Components

130

p
\The Registry (continued)

/’_

N

» Registry Related APIs (continued)

RegOpenkeyEx

RegQueryinfoKey

RegQueryValueEx

RegReplaceKey

RegRestoreFile

RegSaveKey

WriteGenericData

WriteRegData

This function opens the specified key.
This function retrieves information about a specified registry key.

Retrieves the type and data for a specified value name associated with an open registry

key.

Replaces the file backing a registry key and all its subkeys with another file, so that
when the system is next started, the key and subkeys will have the values stored in the
new file.

Places the operating system in a state in which the registry can be replaced by the
supplied file on a warm boot.

Saves the specified key and all of its subkeys and values to a new file. If the specified
key is not a predefined ROOT, it backs up to the ROOT of the hKey and saves there.

This function stores data in the value field of an open registry key.
This function is used to write OS password data.

Called by the OS to transfer registry data to persistent storage as defined by the OEM.

N\

S

For Windows Embedded CE development, memory usage is an important consideration and the registry is no
exception. The following guidelines are based on the fact that it takes less memory to store a value than to

store a key:
Keep your key depth as shallow as possible. Eliminate unnecessary subkeys.

When possible, replace subkeys with values. For example, a subkey Colors might be replaced with a value

named Colors.

Store as much information in one value as possible. For example, a date value could be formatted to include

the time rather than using two values.

Module 4 - Components

131

-
kThe Registry (continued)

7

CeFindCloseRegChange

CeFindFirstRegChange

CeFindNextRegChange

N

» Registry Notification APIs

This function stops change notification handle monitoring.

This function creates a change notification handle and sets up initial
change notification filter conditions. A wait on a notification handle

succeeds when a change matching the filter conditions occurs in the
specified registry key, or subkeys.

This function requests that the operating system signal a change
notification handle the next time it detects an appropriate change.

AN

Registry notification functions:

http://msdn2.microsoft.com/en-us/library/aa917049.aspx

This table lists the registry notification functions available in Windows Embedded CE. Details on each APl is

available in the help system and online. Drivers and applications could use these APl to monitor registry

changes that would affect their functionality dynamically without coding an separate eventing mechanism.

Module 4 - Components

132

7

5 Operating System Components

//

e The
e The
» Lab
e Povy

File Systems
Registry
4.1 - Using the Remote Registry Editor

oy MAanmsoormaont

e Lab

e Integ

e Rey

* Lab Goals

1. Use the remote registry editor to explore
and change the device registry

* \/ideo

Nt

AN

Module 4 - Components

133

7

5 Operating System Components

/_

e The File Systems

e The Registry

e Lab 4.1 — Using the Remote Registry Editor

» Power Management

L A_" = — CiLl . | D

o Lj
e |

R

* Overview of Power Manager

* Power Manager Implementation

* Power Management Diagram

* System Power States

* Device Power States

* Activity Timers

* Applications & Power Management
* |dle Power Management

* System Suspend & Resume

X

Module 4 - Components 134

Power Management (continued)

Overview of Power Manager

OS Component responsible for meeting the power needs
of system

Application interface
Allows communication of power needs
Allows notification of power events

Device interface
Allows driver to request a change to their power state
Request may or may not be granted
Allows PM to set device power state
Device is responsible to perform

The Power Manager manages device power, improves overall operating system (OS) power efficiency and
flexibility, provides power management for each device, and coexists with applications and drivers that do not
support the Power Manager. The power manager takes input from a number of sources to determine the

power state of each device under its control. The Power Manager provides both an application and a device
interface.

Module 4 - Components 135

Power Management (continued)

Overview of Power Manager

Power Manager determines when to change system
power states
Decision logic implemented in PDD
Default implementation based on activity timers
UserActivity timer
SystemActivity timer
Timer settings exposed to user with control panel applet

The sample Power Manager implementation defines On, Userldle, Systemldle and Suspend as the four system
power states. When the user is actively using the system, the power state is set to On. If the user stops using
the system, the power state is set to Userldle. After a longer period of user inactivity it changes to the
Systemldle state. As long as device drivers are active, the system remains in this state. If device drivers become
inactive the system changes to the Suspend state.

The Userldle state is intended for use when the user is using the device but not actively interacting with it. For
example, the user may be only looking at the display and not interacting with the system. The Systemldle state
is intended for use when the user is not directly using the system but processes are still active. For example,
during a file transfer the user may consider the device to be idle, even if the system processes are actually still
proceeding.

The sample Power Manager implementation makes various decisions on user and system activity based upon
the UserActivity and SystemActivity timers. The time-outs for transitioning between these system power states
is different when the system is on AC power from when it is only on battery power.

The sample run-time images provided with Windows Embedded CE are all AC powered. You may choose to
implement a separate set of power states for use when the system is on battery power, in a cradle, and so on.
You can implement these customizations by copying the sample Power Manager PDD to the platform directory
and modifying it appropriately.

User Idle Timer
If runs out, system goes to System Idle (turns screen off)
Reset with User Activity (keyboard, touch)

System Idle Timer
If runs out, system suspends
Reset with User Activity (keyboard, touch) and SystemldleTimerReset()

Module 4 - Components

136

Power Management (continued)

Overview of Power Manager
PM only controls drivers that are Power Manager aware
Drivers not required to support Power Manager

Devices must advertise that they support the Power
Manager interface for PM control
Iclass registry entry with Power Manager GUID
Advertiselnterface with Power Manager GUID

Power manager support is optional in a driver. Drivers must implement a set of IOCTLs defined by the Power
Manager, and advertise support for the Power Manager in order to be managed.

Module 4 - Components 137

Power Management (continued)

Power Manager Implementation

Default implementation provide “out of the box”
WINCE600\PUBLIC\COMMON\QAK\DRIVERS\PM
MDD/PDD model
PDD defines the supported system power states

PDD contains logic that determines when/how to transition
between system power states

OEMs can modify PDD to meet unigue device requirements

Microsoft provides a default power manager implementation that is suitable for many devices. The Power
Manager is implemented as an MDD/PDD driver in the PUBLIC tree. The PDD contains the logic that
determines what system power states are supported and how to transition between them. You may clone the
PDD and modify it to implement your own system power states if your needs are different.

Module 4 - Components

138

Power Management (continued)

Device State Code Sample

pmdevsamplec -
{Unknown Scope) -

case IOCTL POVER SET:
AT (pOutBur '= NULL

SR b

€% OutBuflen == sizeof (CEDEVICE POVER_STATE)
&& pduBytesTransferred

LOCK (pds) =
_ ey {
CEDEVICE POVER_STATE NewDx = *(PCEDEVICE POVER_STATE) pOutBuf;
AL (VALID DX (NewDx))
our sample device doesn't Support D3 30 turn it off instead
if (NewDx == D3) |
NewDx = D4;
]
*(PCEDEVICE_POVER STATE) pOutBuf = MNewDux:
TpdvByteaTransferced = sizeof (CEDEVICE_POVER_STATE) ;
pda->CurrentDx = NewDx:
pds->#Bocst Requested = FALSE:
pds->fReduct ionRequested = FALSE:
dvErr = ERROR_SUCCESS:

DEBUGHSG (ZONE_IOCTL, (_T("va: IOCTL_POWE u ¥3: pos k sutcin®), pscFoeme,
HewDx, dvErr == ERROR_SUCCESS 7 _ d~), pds->CurrentDx]):

]
__except (EXCEPTION_EXECUTE_HANDLER) (
DEBUGHSG (ZONE_IOCTL, ([_T("%=2: exception in fectlirin“))):
]
UNLOCK (pda) #

break:

A device that implements all five power states manages its power dynamically by stepping down from DO to D1,
or D1 to D2, if it has been inactive for some period of time. The device does this in stages because D2's power
consumption is lower but it is much less responsive also. If the device detects activity, and it is not in DO, it will

attempt to go to DO.

The driver code only keeps track of whether or not it has requested a state transition, not whether the
transition has occurred. This is important, because the device might request DO while at D2, but the Power
Manager might only set it to D1 because of the current power state. On the next device activity the device
would request DO again and the Power Manager might simply leave it at D1. Keeping track of the fact that it
requested a state transition would prevent further unnecessary Power Manager API calls while the device is

active. The same logic applies to power state reductions due to inactivity time-outs.

Module 4 - Components 139

Power Management (continued)

Applications can request notification of Power events
RequestPowerNotifications/StopPowerNotifications

Notifications generated by Power Manager

Uses Point to Point Message Queues

Applications register for desired event type
System power state transitions
Change between AC/DC power sources
Resume occurred
Battery power status field has changed

Notification only, no opportunity to modify, delay or
block event

Applications (or drivers) can request notification of various power management related events using the
RequestPowerNotifications API. These notifications are broadcast by the Power Manager to all interested
parties using point to point message queues. Applications indicate the type of event they are interested in
when they register for the notifications; they do not need to handle event types they are not interested in. The
available events include

System power state transitions

Change between AC and DC power source

Notification that the system has resumed from a suspend state (applications generally have no

knowledge when suspend is about to occur, they can only find out after the fact).

A battery power status field has changed
These are notifications only; there is no mechanism for the application to modify, delay or block the event in
question. Sometimes applications want to be notified when a suspend is about to occur so they can perform an
action. The notification mechanism does not provide that capability; the best solution is to move the desired
functionality into a driver since drivers do participate in the system power state change.

Module 4 - Components 140

Power Management (continued)

Applications can request a system power state change

SetSystemPowerState will instruct the Power Manager to
change power states

Specify by name

Specify by “hint” (bitmask)

System power states are OEM defined, so applications
may not know state names
Power manager chooses most appropriate state based on hint
Hint bitmasks defined by Microsoft for standard state types

Power Manager may restrict applications from entering
certain system power states

In some situations applications may want to change the system power state. Applications are not assumed to
know which power states are available on a given Windows Embedded CE-based device, nor are they expected
to know the characteristics of the system power states that are available. Rather than calling
SetSystemPowerState with an explicit state name, applications can invoke it with a bitmask describing the
characteristics of the power state into which they want to transition.

The Power Manager will translate this bitmask into a specific power state. For example, an application might
request a system power status change with the POWER_STATE_SUSPEND bit set. The Power Manager would
then transition into Suspend or SuspendCradle, depending on whether or not the system is in a cradle at the
time of the request. If the device were removed from the cradle while in the SuspendCradle state, the Power
Manager would transition the system into a suspend state.

The Power Manager may restrict applications from entering certain system power states. For example, if the
Power Manager is actively controlling system power states based on external inputs, it may not allow you to
explicitly enter an ACRun power state when the unit is running on battery power. The default Power Manager
implementation permits only applications to suspend the system.

Module 4 - Components 141

Power Management (continued)

Applications can set power requirement for a device

Application calls SetPowerRequirement to request a
specific device maintain a minimum power state

Allows device to be at a higher power state than system
power state would otherwise allow

Application should call ReleasePowerRequirement as
soon as possible to allow normal power management to
continue

In some situations applications may want to influence the Power Manager's administration of system power
states. For example, a pager application might want to keep "COM3:" at D3 or higher, even in a suspend state,
so that an incoming page will wake the system. Or a streaming audio application may want to keep the network
card and audio system at full power, even when the system is on battery power and has been idle for a while.
The Power Manager provides the SetPowerRequirement API to support applications that have special power
management needs.

The SetPowerRequirement API allows applications to ask that the Power Manager set a lower bound on device
power states. If a power requirement is in effect, the Power Manager will not allow devices to set their own
power state below that specified by the requirement. When the Power Manager changes system power states,
it will normally keep device requirements in force even if they maintain a device's power state at a level higher
than allowed by the system power state.

Device power requirements are normally set aside when the OS suspends. During an OS suspend state, the CPU
is stopped and interrupts are not serviced. If an application is using a device that might be able to operate
during a suspend state, it can set the POWER_FORCE flag when it calls SetPowerRequirement. It is the
responsibility of a device driver to disable itself if the OS suspends.

The Power Manager may set aside device power requirements under other circumstances as well. For example,
an OEM may choose to interpret the OS power state POWER_STATE_CRITICAL flag as indicating that the
battery level of the OS is critically low and all devices should be turned off.

Module 4 - Components

142

s

N Power Management (continued)

7

DevicePowerNotify

GetDevicePower

GetSystemPowerState
PowerPolicyNotify

RegisterPowerRelationship

ReleasePowerRelationship

ReleasePowerReguirement

RequestPowerNotifications

SetDevicePower

SetPowerRequirement

SetSystemPowerState

_ StopPowerNotifications

N

Requests that the Power Manager change the power state of a device.
Returns the current power state for a device.
This function returns the current system power state currently in effect.

This function notifies the power manager of the events that are necessary in order
to implement a power policy created by an OEM.

Establishes dynamic parent and child or bus and client driver relationship.
Releases the HANDLE returned from RegisterPowerRelationship.

This function requests that the Power Manager release a power requirement
previously set with SetPowerRequirement.

Allows applications and drivers to register for power notification events.
This function sets the device power state for a device.

Notifies power manager that an application has a specific device power
requirement.

This function sets the system power state to the requested value.

Allows applications and drivers to stop receiving power notification events.

Module 4 - Components 143

Power Management (continued)

Idle Power Management

Kernel knows when no threads are running
Calls OEMIdIe to put the CPU in lower power states
Must be supported by CPU

Transparent to rest of system and user

Independent of Power Manager

Small change here = big change in Standby time
Majority of time spent is in OEMIdle

The kernel also contributes to power management outside of the Power Manager. The kernel knows when
there are no threads scheduled to run, and calls the OEMlIdle function in the OAL. OEMIdle has the option to
place the CPU into a lower power idle mode that can be quickly exited, assuming the CPU supports an idle

mode. This is the lowest energy usage state possible balanced with the need to return from idle quickly. The
idle mode is completely transparent to the user and the rest of the system.

Module 4 - Components 144

f N\
Power Management (continued)
o S
= =N
» Power Management Architecture
Notification] Aoplicati
Message Queue 1 PRleIons
1 Application APIs
A 4
Power Manager
APls
A
Driver APls
Power Manager I ‘;I Drivers
e 7

Power management architecture:
http://msdn2.microsoft.com/en-us/library/aa929261.aspx

Module 4 - Components 145

Power Management (continued)

Device Power State Changes

Drivers may not change power state unless instructed to
by Power Manager

Drivers should manage power within a power state on
their own

Drivers can request that the Power Manager change their
state

Power Manager may change to requested state, another state,
or no change at all

Drivers must not assume that their request will be honored

Drivers that are under Power Manager control can only change power states when instructed to do so by the
Power Manager. Drivers can and should still adjust power within a state on their own as long as this doesn’t
require a power state change.

Drivers can request that the Power Manager place them into a different state. This typically occurs when the
driver knows that it is able to go to a lower power state based on its current activity even though the system
power state calls for a higher power device state. The Power Manager may honor that request, or it may not.

Module 4 - Components 146

Power Management (continued)

Drivers communicate
power needs with
DevicePowerNotify

Power Manager sets device
state with DeviceloControl

s Power Manager <

Drivers must expose
stream interface

DeviceloControl DevicePowerNotify

Device Driver

The Power Manager uses two mechanisms to communicate with power-managed drivers. The Power Manager
calls down to a device driver to determine the device's capabilities and update its device power state. Devices
may call up to the Power Manager to request device power state changes. Down calls are implemented as
IOCTLs. Devices call up to the Power Manager with the DevicePowerNotify API.

Because the Power Manager uses DeviceloControl to communicate with power-managed devices, such devices
must expose a stream interface. In some situations, a power management proxy may expose the interface.
Network Driver Interface Specification (NDIS) exposes a stream interface that enables proxy management of
NDIS miniport drivers using the RegisterPowerRelationship API. The Power Manager provides a mechanism for
communicating directly with non-stream drivers. This method consists of an abstraction layer for opening a
handle to a device, sending a request, and so on. A majority of devices support the stream interface, but this is
not true in every instance. For example, the driver located in
Public\Common\Oak\Drivers\Pm\Mdd\Pmdisplay.cpp implements a communication interface based on the
ExtEscape function.

Opening standard device names of the format COM1:, and so on, allows access to drivers that expose a stream
interface. However, the Power Manager does not require that power-manageable devices use this naming
format; a device name can be any unique string. So, for example, an NDIS miniport might be named VMINI1.

Module 4 - Components 147

Power Management (continued)

System Power States

Named power states for entire system
Defined by the OEM
Act as global setting for device power states

Set maximum device power states

Default implementation provided by Microsoft

On User actively using device
Userldle User passively using the device
Systemldle User not using the device
Suspend Device powered down

The Power Manager manages device power states within the context of system power states that are defined
by the OEM. System power states are described in the registry and any number can be defined. System power
states impose a global upper bound on device power states.

http://msdn2.microsoft.com/en-us/library/aa930499.aspx

Module 4 - Components 148

Power Management (continued)

Device Power States

Power level of a given device

Device in this context means individual hardware peripheral

Fixed number of predefined states
DO Full on Full functionality
D1 Lowon Full functionality, reduced performance
D2 Standby Partial power, auto wakeup on request
D3 Sleep Partial power, can wake up
D4 Off No power

Devices may implement a subset of states
Device determines how a particular state is implemented

Device powers states map to system power states &

The Power Manager expects all managed devices to support one or more device power states. There are a
limited number of device power states, and the device may inform the Power Manager of their power
consumption characteristics. Device power states generally trade off performance with power consumption.

Full on - DO (only required state)

State in which the device is on and running. It is receiving full power from the system and is delivering full
functionality to the user.

Lowon - D1

State in which the device is fully functional at a lower power or performance state than DO. D1 is applicable
when the device is being used, but where peak performance is unnecessary and power is at a premium.
Standby - D2

State in which the device is partially powered with automatic wakeup on request. A device in state D2 is
effectively standing by.

Sleep - D3

State in which the device is partially powered with device-initiated wakeup if available. A device in state D3 is
sleeping but capable of responding to an interrupt and bringing the CPU out of idle on its own. It consumes only
enough power to be able to do so; which must be less than or equal to the amount of power used in state D2.
Off - D4

State in which the device has no power. A device in state D4 should not be consuming any significant power.
Some peripheral busses require static terminations that intrinsically use non-zero power when a device is
physically connected to the bus.

Device Power state definitions are statically predefined. The Power Manager passes a device state to a driver
and the driver is responsible for mapping the state to its device capabilities and then performing the applicable
state transition on its physical device.

Device power states:
http://msdn2.microsoft.com/en-us/library/aa932261.aspx

Module 4 - Components 149

Power Management (continued)

Device powers states map to system power states

Individual devices can override the default mapping via
registry

OEM can override default mapping via registry

On DO

User Idle D1
System Idle D2
Suspend D3

The following registry settings show a sample system power state to device power state mapping.
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\On]
"Default"=dword:0 ; DO
"Flags"=dword:10000 ; POWER_STATE_ON
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\Userldle]
"Default"=dword:1 ;D1
"Flags"=dword:0
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\Systemidle]
"Default"=dword:2 ; D2
"Flags"=dword:0
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\Suspend]
"Default"=dword:3 ; D3
"Flags"=dword:200000 ; POWER_STATE_SUSPEND
; @CESYSGEN IF CE_MODULES_NDIS
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\Suspend\{98C5250D-C29A-4985-
AE5F-AFE5367E5006}]
"Default"=dword:4 ; D4
; @CESYSGEN ENDIF CE_MODULES_NDIS

When the system enters the Suspend state using this sample configuration, all possible wake sources are
enabled with the exception of NDIS miniports. If a device does not support D3, it should automatically enter D4
instead.

Power states:
http://msdn2.microsoft.com/en-us/library/aa929251.aspx

Module 4 - Components 150

Power Management (continued)

Activity Timers

Named timers implemented by Power Manager
Configurable in registry
Any number of timers can be implemented

General purpose mechanism that can be used by any
component

Implemented with named events
Used by default Power Manager implementation
PM implements two timers for its own use
Used to determine user and system activity
Some OS components reset timers to indicate activity
GWES, Networking

The Power Manager also implements a general purpose timer control. The timers are configurable in the
registry, any number of timers can be implemented. The timers are based on named events; the name is taken
from the registry configuration. Any OS component can make use of this mechanism.

The default Power Manager implementation configures two activity timers for its own use. These timers are
used to determine user activity and system activity. OS components that have knowledge of user and system
activity reset these timers. The Power Manager uses this information in determining when to transition
between system power states.

Activity timers:
http://msdn2.microsoft.com/en-us/library/aa923909.aspx

Module 4 - Components 151

Power Management (continued)

Power Manager implements suspend/resume sequence
Initiated in response to SetSystemPowerState()

Drivers participate in suspend/resume process

Includes drivers that are not managed by Power Manager

Applications can initiate suspend sequence if permitted
by Power Manager implementation

Applications have no opportunity to block or otherwise
participate in the suspend sequence

Suspend Path &

Resume Path &

The Power Manager implements the suspend sequence in response to a SetSystemPowerState call. The power
manager notifies drivers to move to their low power suspend state as configured in the registry. Drivers that
are not power manager aware will also be notified of the suspend sequence, but at a later point in the process.

Applications can initiate a suspend sequence by calling SetSystemPower state, as long as the Power Manager
implementation permits it. However, applications can not otherwise participate in the suspend process. Any

functionality that needs to participate in the suspend process should be in a driver.

http://msdn2.microsoft.com/en-us/library/aa929293.aspx

Module 4 - Components

152

L Power Management (continued)

\ /

{

» Suspend Path

» Device goes to lowest
possible power state

« Off from a user
perspective, but
maintains volatile
memory

i

PM disables all PM-aware non-block drivers

\Z

PM calls IOCTL_HAL_PRESUSPEND

N

PM disables files systems

\Z

PM disables all PM-aware block drivers

\Z

System goes single threaded

\Z

Kernel calls legacy XXX_PowerDown() functions

\Z

Kernel calls OEMPowerOff()

/

The suspend state is the lowest possible power state short of removing power from the device. This state is

only possible if the CPU supports a suitable low power mode. Memory contents are maintained during

suspend, allowing the device to return to exactly the state it left. The act of returning from the low power
mode back to the original state is known as “resume”. Applications that are running on the device have no
knowledge that this state change has occurred, unless they have requested the appropriate notifications from

the Power Manager.

http://msdn2.microsoft.com/en-us/library/aa929293.aspx

Module 4 - Components

153

: Power Management (continued)

» Resume Path
Provides “Instant on”

Returns to state that
existed prior to entering
suspend

. Can be transparent to
applications

CPU wakes

\Z

OEMPowerOff Returns

SZ

Kernel calls legacy XXX_PowerUp in drivers

\Z

System goes multithreaded

\Z

PM enables PM-aware block drivers

\Z

PM enables file systems

\Z

PM enables remaining PM-aware drivers

The suspend state is the lowest possible power state short of removing power from the device. This state is
only possible if the CPU supports a suitable low power mode. Memory contents are maintained during
suspend, allowing the device to return to exactly the state it left. The act of returning from the low power
mode back to the original state is known as “resume”. Applications that are running on the device have no
knowledge that this state change has occurred, unless they have requested the appropriate notifications from

the Power Manager.

http://msdn2.microsoft.com/en-us/library/aa929293.aspx

Module 4 - Components 154

4 N\
5 Operating System Components

vy
a N

e The File Systems

e The Registry

e Lab 4.1 — Using the Remote Registry Editor

e Power Management

» Lab 4.2 - Experimenting with Power Management

| s

ol

* Lab Goals

i 1. Introduce the Windows Embedded CE 6.0 power management
architecture

2. Utilize portions of the CE 6.0 Power Management architecture

Become familiar with several Power Management APls

4. Allow a test application to receive notification about system
power events and to put power requirements into place

* VVideo

Ll

Module 4 - Components 155

Operating System Components

Internationalization

* Localization vs. Internationalization
* Platform Localization Options

* Locale Support

'+ Internationalization Components

Internationalization is made up of a collection of functionality that provides general locale services and locale—
specific support for certain key capabilities. Internationalization spans a range of language-specific functionality
starting with code pages, keyboards and fonts.

Windows Embedded CE provides general locale services for numerous code pages, and linguistic and cultural
conventions through Unicode and national language support (NLS). Unicode is a universal character encoding
system, while NLS carries information on date, time, calendar, number, and currency formats. NLS also
provides sorting and character type information for all the locales supported by the operating system (OS).

The Multilingual User Interface (MUI), functionality makes it possible for users to switch the language and
locale of the user interface (Ul).

In addition to general and language—specific functionality, internationalization includes support for a
handwriting recognition engine that is extremely useful when working with East Asian languages. This
functionality supports several East Asian language input methods (IM) and Input Method Editors (IME) that are
uniquely designed for a specific language. East Asian languages require IMEs in order to input characters from a
keyboard or stylus tablet.

http://msdn2.microsoft.com/en-us/library/aa911922.aspx

Module 4 - Components

156

Internationalization (continued)

Platform Localization Options

Changing the language of your operating system

Adding locales and selecting codepages is done from the project
properties locale setting page.

TrainingOSDesign Property Pages T S|
Configuration: | Active(TrainingBSP ARMYL ~ N Configuration Manager..
= Common Properties Locales
Build Tree (WINCEROOT) J| Afvkaans [South Aftica)
Configuration Properties Albanian [Albanis)

General Asabic |Algenia) Cloas A
Asabic [Bahven)
Ausbic (Eqypt]

Build Options

Emaronment Defaukt locabe

Custom Build Actions English [Unded States) -

SubprojectImage Settings| -

437 [OEM - Ursted States)

708 (Asabic - ASMO 708]

T20 |fuabic - Transparert ASMO] Clear A
737 (DEM - Greek 437G)

775 (OEM - Baltic)

| Localze the buid

Shiict locakzation checking in the buld

| ok Cancel

Creating software that is great in many different locals in the world is an ever increasing challenge. Each market
is unique, understanding those market needs and creating great software for specific area can be described as
localization.

Making software that accommodates differences in language, culture, and hardware is called
internationalization. The goal of internationalization is to present users with a consistent look, feel, and
functionality across different language editions of a product. Users expect localized software to support the
same basic functionality that the original-language edition of the product does, and they expect it to have the
same level of quality. They also expect different language editions to interact smoothly with one another.
Windows Embedded CE provides support for numerous character codes, as well as linguistic and cultural
conventions through Unicode and national language support (NLS). Unicode is a universal character encoding
system, while NLS carries information on date, time, calendar, number, and currency formats. NLS also
provides sorting and character-type information for all the locales supported by the operating system (OS).

In addition to character and locale codes, The international support in Windows Embedded CE includes a
handwriting recognition engine that is extremely useful when working with East Asian languages and the
Multilingual User Interface (MUI), functionality that makes it possible for users to switch the language and
locale of the user interface (Ul).

Windows Embedded CE also supports a range of language-specific technologies. These technologies include
several East Asian language Input Methods (IM) and Input Method Editors (IME) that are uniquely designed for
specific languages. East Asian languages require IMEs in order to input characters from a keyboard or stylus
tablet. Windows Embedded CE also provides support for Complex Scripts, as well as the locales that use
Complex Scripts. Windows Embedded CE includes the Unicode Script Processor to handle and process Complex
Scripts.

Module 4 - Components 157

Internationalization (continued)

Local
ocale Support Arabic English (U.S.)
Fonts
English
I(e.yboard layouts and (itotiowide] French
drivers
Input Method Editors German Hebrew
(IMEs)
Input Methods (IMs) Indic Japanese
Simplified
Korean Chinese
Traditional .
Chinese Thai

Windows Embedded CE provides support for a number of different locales. OEMs can also extend and
customize the internationalization. The locale-specific support in Windows Embedded CE includes fonts,
keyboards and keyboard drivers, Input Method Editors (IMEs), and Input Methods (IMs).

http://msdn2.microsoft.com/en-us/library/aa913326.aspx

Here we see the locale support “out of the box”. The exact support is based on the locale being support,
typically including fonts, keyboard drivers, IMEs, and IMs. This support is extensible by OEMs.

Module 4 - Components 158

Internationalization (continued)

Components
National Language Support (NLS)
Multilingual User Interface (MUI) &
Unicode Script Processor for Complex Scripts
Input Method Manager (IMM)
Handwriting Recognizer Engine (HWX)
Keyboards and Fonts for Many Languages

Additional language specific components

National Language Support (NLS)
SYSGEN_CORELOC
Adds NLS support. NLS supports the different locale-specific needs of users around the world.

Multilingual User Interface (MUI)

SYSGEN_MULTIUI

Adds support for MUI. MUI enables you to create one run—time image for Smartphone with multiple languages,
and thus allow the end—user to switch the user interface language.

Unicode Script Processor for Complex Scripts

SYSGEN_UNISCRIBE

Supports scripts that require special processing to show and edit because the characters are not laid out in a
linear progression from left to right. Windows Embedded CE provides the correct text handling and layout for
these scripts, as well as for mirroring capabilities.

Input Method Manager

SYSGEN_IMM

Adds Input Method Manager (IMM). IMM manages the communication between an Input Method Editor (IME)
and an application.

Handwriting Recognizer Engine (HWX)

SYSGEN_HWX
Provides a handwriting recognition engine that supports user-drawn ideographs and characters.

http://msdn2.microsoft.com/en-us/library/aa913456.aspx

Module 4 - Components 159

Internationalization (continued)

Multilingual User Interface

Allows users to change the language of the user interface
(U1)

Single core binary that includes the system default
language

One resource dynamic—link library (DLL) for each
additional target language

The Multilingual User Interface (MUI) allows users to change the language of the user interface (Ul). To make
this possible, the MUI uses a single core binary that includes the system default language, together with one
resource dynamic—link library (DLL) for each additional target language. The target device boots with the
system default language and then a new user—selected language goes into effect after a soft reset. This switch
requires recreating windows, menus, and dialog boxes with the newly loaded resources. In addition, to be
considered successful, the language switch must display these elements with the correct fonts and with the
correct locale—specific information.

http://msdn2.microsoft.com/en-us/library/aa913592.aspx

Module 4 - Components 160

4 N
N Operating System Components)
e N

e The File Systems

e The Registry

e Lab 4.1 — Using the Remote Registry Editor

e Power Management

e Lab 4.2 — Experimenting with Power Management
e Internationalization

» Review

Module 5 - The Build System 161

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

The Build System

Module 5 - The Build System 162

p
N Course Outline
o N

e Course Introduction

“

e Module 1: Operating System Overview

e Module 2: Tools for Platform Development
e Module 3: Operating System Internals

e Module 4: Operating System Components
» Module 5: The Build System

e Module 6: The Board Support Package

e Module 7: Device Driver Concepts

e Module 8: Customizing the OS Design

e Module 9: Application Development

e Module 10: Testing & Verification

Module 5 - The Build System 163

The Build System

- Directory Structure of the Build Tree

The Build Process

The Build Tool

Lab 5.1 — Static and Dynamic Libraries

The Command Line

Lab 5.2 — Building With the Command Line
» Troubleshooting a Build

Lab 5.3 — Troubleshooting Link Errors

Review

Module 5 - The Build System

164

s R
The Build System
_ J
i =
» Directory Structure of the Build Tree
. The llili’l nl’nd“.{'\l‘!‘
* Review
e The H 5 . :
* %_WINCEROOT% (Often C:\WINCE600)
e Lab ﬁ * %_WINCEROOT%\0SDesigns
* %_WINCEROOT%\Platform
e The (« %_WINCEROOT%\Public
e Lab 5 * %_WINCEROOT%\SDK
* %_WINCEROOT%\Other
e Troul * %_WINCEROOT%\Private (optional)
e Lab 5.3 — Troubleshooting Link Errors
e Review
% S

http://msdn2.microsoft.com/en-us/library/aa908702.aspx

Module 5 - The Build System 165

p
\The Build System

-

AN

e Directory Structure of the Build Tree
» The Build Process

® The asaldd Tl
* The output of the build process is a single run-

e Lab : . i o

time image consisting of many components
e The « Often referred to as NK.BIN
e Lab * NK.NBO

* NK.SRE
© 1ol « The complete process is often described as 4
o Lab | or5 phases
* PreSysgen
* Sysgen
* Post Sysgen Build
* BuildRel
* MakelMG

. Y,

e Revi

Build system tools:
http://msdn2.microsoft.com/en-us/library/aa908689.aspx

Module 5 - The Build System 166

The Build Process (continued)

PreSysgen Phase
Typically not used
Rebuilds installed libs
Takes significant time
Only needed when modifying public files

Considered an advanced build phase

http://msdn2.microsoft.com/en-us/library/aa908689.aspx

Module 5 - The Build System 167

The Build Process

Sysgen Phase
Think of it as a filtering process

Generates system specific
header files, libs, .defs

Generated from master set
installed at tools installation

Also used for configuration
files

Uses @CESYSGEN comment
tags so no impact on other

7 7

/ Y
(/ \f(Complete \\ \I
Complete (headers & P 7

V
r~ system libs | source files—7

\x /\//

A\ //

tools ___,,./

Sysgen’d files are per el =

OSDesign: 5 N, ”
%_PROJECTROOT%\cesysgen\ ysgen
SDK System specific headers
OAK System specific linked libs
DDK System specific .defs

http://msdn2.microsoft.com/en-us/library/aa909638.aspx

During the OS Design generation, or Sysgen phase, the build system sets or clears Sysgen variables.

The inclusion of Sysgen variables is typically based on the selection of Catalog items that you include in your OS Design. The
relationship between Sysgen variables and Catalog items can vary. A Catalog item might correspond to more than one

Sysgen variable.

The build system determines which variables to set or clear by processing the Cesysgen.bat files associated with the OS
Design, which are in %_WINCEROOT%\0SDesigns\<OS Design name>\0ak\Misc.

The master Cesysgen.bat file manages a set of subordinate batch files that correspond to the dependency trees included in
the OS Design. The build system uses these variables to link the corresponding static libraries into modules.

The build system also filters the header files, creating headers that only contain prototypes for the functions exported by
your OS Design. Import libraries for the modules are also created during this phase.

The filtered header files and import libraries are included in the software development kit (SDK), which others can use to
create applications that run on the new OS.

Also, OS Design configuration files are filtered to create a new set of configuration files specific to your OS Design, which are
used in the Make Image phase.

At the end of the Sysgen phase, the board support package (BSP) is built.

Localization tasks performed during the Sysgen phase include selection of input method editors (IMEs) and fonts for Asian
languages, based on the selected locales.

Environment variables and actions are executed on a per project basis, which means that environment variables you set in
one project do not affect variables defined by another project.

Module 5 - The Build System 168

The Build Process (continued)

Post Sysgen Build
Build BSP

. Uses Build.exe tool

Compiles and links source code in
S(_WINCEROOT)\PLATFORM\COMMON

Compiles and links source code in BSP
Bootloader, drivers, OAL etc
Compiles and links source code in subprojects
. Uses filtered OS components (Output from Sysgen)
Libraries, header files

User Projects

Optional Sysgen Step &

Uses Build.exe tool

Compiles and links source code in $(_WINCEROOT)\PLATFORM\COMMON
Compiles and links source code in BSP

Bootloader, drivers, OAL etc

Compiles and links source code in subprojects

Uses filtered OS components

Libraries, header files

Module 5 - The Build System 169

The Build Process (continued)

Optional sysgen step

Optional sysgen step can occur during this phase
Sysgen step applies only to local build target, not entire OS

Requires CESYSGEN folder with makefile

Typical use is for filtering configuration files
Remove components that are not supported by OS Design

Allows same BSP to be used unmodified in widely varying OS
Designs

Used by reference BSPs provided by Microsoft

The post-sysgen build can also include a local sysgen step. The sysgen in this phase applies only to the local
build target, typically the BSP. This allows the BSP to make use of the capabilities provided by the sysgen tool.
The reference BSPs provided by Microsoft use the filtering capability provided by the sysgen process to
selectively remove components that are not supported by the OS Design. This allows the BSP to build
successfully without modification even though the OS support for a component does not exist.

BSPs can participate in this sysgen step by including the cesysgen folder in their root, containing an appropriate
makefile. Most BSPs that use this capability have a simple makefile that just includes

S(_WINCEROOT)\public\common\cesysgen\CeSysgenPlatform.mak. This makefile is configured to filter the
platform configuration files.

Module 5 - The Build System 170

The Build Process (continued)

BuildRel Phase (AKA Release Copy Phase)

Copies output files to %_FLATRELEASEDIR% in preparation for
Makelmg phase

Copies OS binaries and configuration files from the OS Design
directory to the release directory

Copies project binaries and configuration files from the OS Design
directory to the release directory

Copies BSP binaries and configuration files from the BSP directory to
the release directory
This process can use hard links (default)
Use care when editing
Can override with BUILDREL_USE_COPY

%WINCEREL% can be used to force copy during individual
component builds

Files in the %_FLATRELEASEDIR% are accessible through
RELDIR file system driver when connected with KITL

The build process copies the OS components created during the System Generation phase and the BSP
components created during the Build phase to a single directory known as the Flat Release Directory during the
Build Release Directory phase (known as buildrel after the batch file that implements it).

The Buildrel tool copies files from a number of sources to a common directory in preparation for the Make Run-
Time Image phase. These files include the OS components that were built during the System Generation phase
as well as the BSP build phase. The contents of the following directories are copied by the buildrel tool:
%_PROJECTROOT%\Cesysgen\Oak\Files

%_PROJECTROOT%\Oak\Files

%_PROJECTROOT%\Cesysgen\Oak\Target\%_TGTCPU%\%WINCEDEBUG%
%_PROJECTROOT%\Oak\Target\%_TGTCPU%\%WINCEDEBUG%

%_PLATFORMROOT%\%_TGTPLAT%\Target\%_TGTCPU%\%WINCEDEBUG%
%_PLATFORMROOT%\%_TGTPLAT%\Files
%_PLATFORMROOT%\%_TGTPLAT%\cesysgen\Files

The WINCEREL environment variable, if set, causes the build tools to automatically binaries to the release
directory when they are built. This is a performance enhancement that allows quick turnaround when
recompiling BSP components. Note that you must still have performed the buildrel phase at least once in order
to copy all of the OS binaries as well as configuration files to the flat release directory. You must also run the
buildrel tool if you change configuration files.

The buildrel tool uses hard links instead of a normal copy to get significantly increased performance. For this
reason, you should not edit files directly in the release directory. This is a shortcut that is sometimes used, but
it can cause unintentional corruption of the original source file if your editor does not cause the link to be
broken. These kinds of problems can be very difficult to track down. You can set the BUILDREL_USE_COPY
environment variable to ensure that buildrel uses xcopy instead of hard links if you suspect problems with hard
links.

Module 5 - The Build System 171

The Build Process (continued)

MAKEIMG Phase
Creates the NK.BIN

Merges configuration files:
BIBs -> CE.BIB
REGs -> REGINIT.INI
DATs -> INITOBJ.DAT
DBs -> INITDB.INI
Compresses reginit.ini into binary registry file = default.fdf
Replaces resources in EXEs and DLLs for localization
Uses CE.BIB to combine modules & files into image file (NK.BIN)

In the making an image phase, the Makeimg tool performs the following steps:

1. Makeimg merges the configuration files used in the build process:

a. Makeimg merges all .BIB files into a unique file (CE.BIB) by using the Fmerge tool. CE.BIB identifies all the files
to be combined in the image.

b. Makeimg merges all .reg files into a unique file (reginit.ini) by using the Fmerge tool. Reginit.ini represents all
registry entries for the image.

c. Makeimg merges all .dat files into a unique file (INITOBJ.DAT) by using the Fmerge tool. INITOBJ.DAT provides
a description of the directory and a file location for the image.

d. Makeimg merges all .db files into a unique file (initdb.ini) that defines default databases in the image.

3. Replaces resources in modules to adapt the image to a specific language.

The language must be specified by the LOCALE environment variable.

4. Finally, makeimg completes the Windows Embedded CE image with files and binaries specified in CE.BIB.

To make an image using the Platform Builder IDE:

¢ On the Build menu, click Make Image.

http://msdn2.microsoft.com/en-us/library/aa909387.aspx

Module 5 - The Build System 172

The Build Process (continued)

Configuration Files
BIB — Binary Image Builder Files
REG — Registry Files
DAT - Directory Specification Files
DB — Database Content Files

Module 5 - The Build System

173

r/

kThe Build Process (continued)

/_

» BIB — Binary Image Builder
Files

+ MEMORY section
(config.bib)
. Specifies Memory
Configuration

N

Hdefine

HEMORY

: NE and RAM region definitions.

=] IF THGFLASH !

| Hdezine NENANE
#define NESTART

Fdefine NELEN

Hdefine RAMNAME
Hdefine RAMSTART
| #define RAMLEN
= ELSE
Wdefine HENAHE
FdeZfine NESTART
Hdefine NELEN
Hdefine RAMNANE
Fdefine RAMSTART
RAMLEN

ENDIF ; INGFLASH

PTS

ARGE
SLEEPSTATE
EBOOT
EBOOT_STACK
EBOOT_RAN

5 (MKNAME)
5 { RAMNHAME }

EFSBUF
DISPLAY

NK
80070000
02000000

RN
82070000
O1E7FO00

NK
88001000
QSL£££000

RAN
80070000
03ETFO00

§0000000
80020000
80020800
80021000
80061000
80065000

S({NKSTART)
S{RAMSTART)

G3IEEFO00
83F00000

ff G6mb less 4k

opozoooo
000O0DB00
00000800
00040000
00004000
00006000

§(NKLEN)
§{RAMLEN)

00011000
00100000

RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED

RANINAGE
RAN

RESERVED
RESERVED

X

config.bib is part of the BSP and is located in the FILES folder of the platform.

Module 5 - The Build System

174

"f

kThe Build Process (continued)

7

Files

(config.bib)

Settings

» BIB - Binary Image Builder

+» CONFIG section

. Specifies Miscellaneous

CONFIG

[: BCESYSGEN IF 'NK_WKHOCOMP
L COMPRESS ION=ON
i BCESYSGEN ENDIF !NK_NENOCOMP
O : BCESYSGEN IF NK_NKNOCOMP
L COMPRESS ION=OFF
; BCESYSGEN ENDIF NK_NENOCOMP

KERNELFIXUPS=0N
: Multi-Region

=1 IF IMGFLASH !
L AUTOSIZE=CON # AUTOSIZE is used to
ENDIF

DLLADDR_AUTOSIZE=ON

AUTOSIZE ROMGAP=1D000
sAUTOSIZE_DLLADDRGAP=0
JAUTOSIZE DLLDATAADDRGAP=0
SAUTOSIZE_DLLCODEADDRGAP=0

= IF IMGPROFILER

L PROFILE=ON

= ELSE

L PROFILE=OFF
ENDIF

= IF IMGFLASH
ROMSTART=88000000
RONSIZE= 06000000
ROMVIDTH=32

ENDIF : INGFLASH

enab

/ \

Module 5 - The Build System

175

-
kThe Build Process (continued)

//
» BIB = Binary Image Builder Files

+ MODULES section (many BIBs)
. XIP Modules

HODULES
¢ Noame Path

= : BCESYSGEN IF CE_MODULES_NK
2 IF IMGHOKITL
nk.axe ${_FLATRELEASEDIR)}\oal.exe
ENDIF INGNOKITL

) IF TMGMOKITL |

] IF IMGHNOEITLDLL

! nk.exe §(_FLATRELEASEDIR)\oalkitl.exe
ENDIF IMGNOKITLDLL

£ IF IMGMOKITLDLL '

| nk.exe §(_FLATRELEASEDIR)\oal.exe

kicl.dll §(_FLATRELEASEDIR)\kitl.dll
FENDIF INGNOKITLDLL !
| ENDIF INGNOKITL '

Hemory Type

NE SHZ

NE SHZ
NE SHZ

AN

Module 5 - The Build System

176

rf

k\The Build Process (continued)

//

» BIB = Binary Image Builder Files

« FILES section (many BIBs)
. Non XIP Modules
. Data Files

FILES
ceconfig.h ${_FLATRELEASEDIR))\ceconIig.h

] ; BCESYSGEN IF COREDLL_CORELOC
wince.nls 5¢ _PMTRELEASEI}IN\ wince.nls

: RCESYSGEN ENDIF

E : BCESYSGEN IF PILESYS FSMAIN

L initob)j.dat §(_FLATRELEASEDIR)'\initob).dat
: QBCESYSGEN ENDIF

£ : BCESYSGEN IF FILESYS_FSREG

L default.fdf §(_FLATRELEASEDIR)‘\default.fdf

BCESYSGEN ENDIF

[: ACESYSGEN IF FILESYS FSREGHIVE

hinnt. . hw S ;l ATREIFASEDTRY \hont . hw

e

NE

NE

NK

NE

¥

SHU

SH

5H

|H

AN

Module 5 - The Build System

177

-
N The Build Process (continued)

7

» REG

— Registry File

COMMON.REG, IE.REG, WCEAPPS.REG...

Define registry settings for default modules
PLATFORM.REG

Platform dependant registry settings
PROJECT.REG

Project specific registry settings
Subproject can have their own registry settings

Edit
 platformreg -
et iy, e —
L |
L) o &) Delma) REG_SZ [
E L;;Lmr‘:ﬁme H REG, 10
2 ConvoPaned 8] Launchsg REG_SZ Emuistoriiub ene
N o 18l)
— — il
platformreq | StartPage| - X

#1; GCESYSGEN IF CE_MODULES DEVICE & COREDLL_CORESTRA & COREDLL_FULL_CRT && COL—)
Y ; @RIPREGION IF DEFAULT DEVICEEMULATOR REG &
[HKEY_LOCAL_MACHINE\ init]

"Launchﬂﬁ"-"!:nulm;urm. exe"

"Depend98"=hex:14,00 |:|
; @XIPREGION ENDIF DEFAULT_DEVICEEMULATOR_REG
; BCESYSGEN ENDIF ; CE_MODULES_DEVICE && COREDLL_CORESTRA &4 COREDLL_FULL_CRT :

; BCESYSGEN IF CE_MODULES SERIAL
r — -
(1 ; BXIPREGION IF DEFAULT_DEVICEEMULATOR_REG
| [HKEY_LOCAL_MACHINE)\Drivers\BuiltIn\SERDHNA]

<[[T | *

B RegEdit | @ Source

Module 5 - The Build System

178

-
k\The Build Process (continued)

//_

« DAT - Define Directory Structure File

« COMMON.DAT, IE.DAT, WCEAPPS.DAT...
Define settings for default modules

« PLATFORM.DAT

. Platform dependant settings

« PROJECT.DAT

Project specific settings

« Subproject can have their own DAT file

Fl

- shell.dat| Start Page | - X
: COMMON —1
; BCESYSGEN IF CE_MODULES_REMNET || CE_MODULES PEGTERHM il

Directory(™ LOC_PROGRANFILES DIR"):-Directory("LOC_COMNUNICATION DIR™)

; BCESYSGEN ENDIF CE_MODULES_REMNET || CE_MODULES_PEGTERM

; BCESYSGEN IF CE_MODULES_REMNET

Pirectory(™\ ¥indows\LOC PROGRAMS DIR\LOC_COMMUNICATION DIR"):-File("LOC_REMOTENE
Directory("\LOC_PROGRANFILES_DIR\LOC_COMMUNICATION DIR"):-File("LOC_REMOTENETW(
; BCESYSGEN ENDIF CE_MODULES_REMNET

: BCESYSGEN IF CE_MODULES_ PEGTERM

Directory("\LOC_PROGRAMNFILES _DIR\LOC_COMMUNICATION_DIR"):-File("LOC_TERNINAL_L!
Directory (™) Windows)LOC_PROGRAMS DIR\LOC_COMMUNICATION DIR"):-File("LOC_TERMINI

: BCESYSGEN ENDIF CE_MODULES_PEGTERM
: BCESYSGEN IF CE_MODULES_CHD
Directory("\ ¥indows\LOC_PROGRAMS_DIR") :-File (LOC_CHD_LNK", "\Windows\emd. lnk") _

"

AN

Module 5: The Build System 179

The Configuration Files: .DAT Files

Define directory structures
All files are located in \Windows (ROM)

Filesystem parses information provided by .dat files to
create and populate additional RAM directory structure

Results in multiple copies of files
Example:

Root:-Directory(“Program Files”)
Directory(“\Program Files"):-Directory(“My Projects”)

Root:-Directory(“My Documents”)
Directory(“\My Documents”):-File(“MyFile.doc”,"\
Windows \Myfile.doc”)

The .DAT files define folder structure of your image. In the example shown in the slide, two directories are
defined, which are Program Files and My Documents. These directories are located in the root directory, which
does not have any letter in Windows CE. Program Files has one subdirectory My Project. The My Documents

directory contains a file MyFile.doc. Note that it is only an allocation; MyFile.doc must appear in a .BIB file to be
inside the image.

Module 5 - The Build System

180

p
kThe Build Process (continued)

/_

» DB - Define Database File

« COMMON.DB, IE.DB, WCEAPPS.DB...
Define settings for default modules

PLATFORM.DB

. Platform dependent settings

PROJECT.DB

Project specific settings

Subproject can have their own DB file

L]

common.db Start Page |

; BCESYSGEN IF CE_MODULES BTLOADER

Dacabase: "\\EventNotificacions™ : 886 : 1 : 43080002
Record :

Field : 4301001f : "btloader.exe"

Field : 43080002 : B

End

End Database

: BCESYSGEN ENDIF

: authorized to use this sample source code. For the terms of the license,
; please see the license agreement between you and Microsoft or, if applicable, ”
; see the LICENSE.RTF on your install media or the root of your tools installat
: THE SAMPLE SOURCE CODE IS PROVIDED "AS IS"™, VITH NO WARRANTIES.

: 0

- X

—

/¢

Module 5 -

The Build System

181

s

kThe Build Process (continued)

7

e

» General Guidelines for Build Steps

Sysgen

Post-Sysgen Build Yes Maybe
BuildRel Maybe Yes
MAKEIMG Yes Yes

Yes
Yes

Yes

Change in BSP Change Device Add New Catalog Change Code in
Code Memory Layout Item Subproject
No No Yes No

Yes
Maybe

Yes

/
\

P

You do not need to perform the entire build process every time you make a change in your development
process. The steps that are necessary depend on the kind of change you made; the guidelines provided above
are not hard rules. You must have a thorough understanding of the build process in order to make the most
efficient use of your development time, which comes only with experience.

Module 5 - The Build System 182

The Build Process (continued)

Common Build Types
Debug Build Usually includes debug information

Build that does not include debug messages that are used
Release Build during the development process; may include debugger
support

Final build that will be shipped to customers that contains no
Ship Build debug code; some errors are suppressed that are displayed
during the development process

During the development process, you can use the Platform Builder integrated development environment (IDE)
to select one of two default build configurations for your OS Design. These configurations are called Debug and
Release configurations, and offer different options.

The term debug is used to refer to a configuration which, when built, results in a run-time image that includes
many debug messages and typically does not use compiler optimizations

The term release is used to refer to a configuration which, when built, results in a run-time image that usually
includes compiler optimizations and few debug messages. This type of build could be used for a release
candidate (RC).

The term ship refers to an optimized build that contains no debug messages. This would be used for the final
RTM code ship.

Debug - Building a Debug configuration produces a very large run-time image, which has full debugging
enabled. From the Build menu, select Configuration Manager, and then in the Active solution configuration
field, select Debug. This sets the environment variable WINCEDEBUG=debug.

Release- Building a Release, or Retail, configuration produces a smaller run-time image, which has limited
debugging enabled. Release configurations support the RETAILMSG macro, and can be configured for
debugging. From the Project menu, select OS Design Properties, and then select the Build Options page. Then
verify that both the Enable KITL and Enable Kernel Debugger check boxes are selected. This sets the
environment variable WINCEDEBUG-=retail.

Ship - Building a Ship configuration produces the final run-time image that will be provided to the customer,
and which has no debugging enabled. This is the last step and may involve a social event to celebrate the
successful completion of the project and RTM (Release To Manufacturing).

Major steps in creating a ship build:

Clear the Enable KITL check box, which clears the Enable CE Target Control Support check box if it is also
selected. This also sets WINCEDEBUG-=retail.

Verify that the Enable Kernel Debugger check box is cleared.

Select the Enable Ship Build check box. This sets WINCESHIP=1

Module 5 - The Build System 183

The Build Process (continued)

Speeding up the Build Process

Development Workstation
. Fast Hard Drive
No Virus Scanning on %_WINCEROOT%
No File Indexing on %_WINCEROOT%
Defrag

Development Process
Understand the Steps
Do not Pre-Sysgen
Do not run Sysgen unnecessarily
Use targeted builds

Module 5 - The Build System

184

-
kThe Build System

7

e Directory Structure of the Build Tree
e The Build Process
» The Build Tool

® L-:xh Bl o Static and Dunamic Lilherariag

e TH
o L3
e Tn
e L3

* BUILD.EXE

* DIRS

* SOURCES

* SOURCES.CMN
* MAKEFILE.DEF

e Review

Module 5 - The Build System

185

The Build Tool

Build.exe
Central build engine of Windows Embedded CE

Determines what to build
Controlled by DIRS and SOURCES files

Responsible for calling MAKE (Nmake.exe) to do the
actual build
NMAKE uses the SOURCES file (via a makefile) to determine how
to build

Provides automatic dependency checking for source files
and include files

Build tool:
http://msdn2.microsoft.com/en-us/library/aa909690.aspx

Module 5 - The Build System

186

-
N The Build Tool (continued)

7

» DIRS Files

« Text file list of “project subdirectories”

«» Supports wildcard

kM

« Build.exe reads the list to traverse “project

subdirectories”

Folden ¥ HName Date modhed
& TrwmingB? =k OALEE IRTIOT B0 AM
U camaLoG b o 1T B30 A
b cesvseen L powin LATET £:d8 A
b FLES & RTC 102572007 85040
W Ly ST/2006 100 AN
b e
L appg
L BOOTLOADER
b COMMON U]
4 DRMERS
b ome
& Wm
booaL
ki vaemet i
1 e salected By

File Faider
File Folder
File Falder
File: 1k

. Computer

T irs - Notepad

Hie bt Fommt View Help
l1if 0 -
|Copyright (=) Misrsseft Corpsratisn., ALL righ |
| Lendif

|1if o

luse of this sample source code is subject te ©
|license agresment under which you licensed thi
|you did not accept the terms of the license ag
|| authorized to use this sample source code. For
pleass 844 the license agréesment bBatwesn you als|
see the LICENSE.RTF on your install media or t
THE SAMPLE SOURCE CODE IS PROVIDED “AE IS, WI
lendif

DIRE=power \
rte \
eallib \

calexe

o o/ &}

Module 5 - The Build System 187

[The Build Tool (continued)

AN

//_
© SOURCES fies =
¥ Text flle providing a SOURCES List of source files to build
“macro” interface to a TARGETNAME Name of output target without
extension
mUCh more Complex TARGETTYPE PROGRAM, DYNLINK, or LIBRARY
makefile
TARGETLIBS Specifies additional .lib files and
& MAKEF”_E DEF .obj files that should be linked into
5 ' 5 the target executable
(/{J—M AKEENVROOTA) i RELEASETYPE Indicates location for output file:
specified by local makefile LOCAL, OAK, PLATFORM...
. POSTLINK_PASS_CMD Specifies command to run after
«» Build.exe calls NMAKE to link
build projects PRELINK_PASS_CMD Specifies command to run before
linking the final output
» Visual Studio exposes WINCECOD Specifies whether assembler
.cod) fil d duri
SOURCES through a GUI sl
(nght click on SprrUjeCt WINCEMAP whether mapfile (.map) files are
and select Properties) generated during compile time

Many More; see:

http://msdn2.microsoft.com/en-us/library/aa908707.aspx

e Y,

The SOURCES file contains the component specific directives needed by build.exe and nmake. The SOURCES
file is included by the shared system wide makefile called makefile.def. This allows the component makefile to
remain relatively simple.. The shared system makefile is included by a simple one line makefile in the
component subdirectory.

Module 5 - The Build System 188

The Build Tool (continued)

SOURCES Files (continued)
SOURCELIBS vs. TARGETLIBS

. The reason for both is a componentization feature of Windows
Embedded CE. Primarily allowing stubs to be conditionally linked

. The linker always uses the first version of a function that it finds
EXE - TARGETLIBS listed first to linker
DLL - SOURCELIBS are listed first to linker
LIB - Only SOURCELIBS are listed to linker

Module 5 - The Build System 189

-
kThe Build Tool (continued)

7

7 Q

¢ SOURCES.CMN

« Common SOURCES settings
applied to all SOURCES
projects in a sub folder
(listed in a DIRS file)

Name Date modified

« Placed at root of DIRS tree |, CATALOG
Build.exe will walk back up e
directories until no parent "2;.,

DIRS is found and look for - fuadd
SOURCES.CMN in the folder (2] bspaml
with the top level DIRS file Bl
A | Buildowm
« Commonly used in BSPs and Wcebasecesysgenbat
PUBLIC folders B i
. _COMMONPUBROOT pmn
- __PROJROOT -

- _ISVINCPATH Litem select: 1.18 KB
. _OEMINCPATH

Module 5 - The Build System 190

-
kThe Build Tool (continued)

/
¢ MAKEFILE.DEF

« Default MAKE rules for most aspects of the build

7 @

« Provides standard rules for various types of targets

Reduces the amount of MAKEFILE “code” needed for most projects to the
common macros in the SOURCES files

» SOURCES file provides macro interface

« Located in %_MAKEENVROOT%
. % _ WINCEROOT%\public\common\OAK\misc

S p——

LT .~ TWriand 50 » WRHHHE » PUBLC » COMMON » OAK » MIC _‘J.

= e -

Module 5 - The Build System

191

-
kThe Build System

7

e Directory Structure of the Build Tree
e The Build Process

e The Build Tool

» Lab 5.1 — Static and Dynamic Libraries

® The Cormmanne | ima

* Lab Goals
e Lab . 5
1. Create simple static lib
e Trol 2. Link the static lib with a dynamic lib
o Lak 3. Link the dynamic lib with an exe

* Video

e Reviewr

7 @

Module 5 - The Build System

192

-
kThe Build System

7

e Directory Structure of the Build Tree

e The Build Process
e The Build Tool

e Lab 5.1 — Static and Dynamic Libraries

» The Command Line

® I_aI | i | Dastlelie e Al sl 2l [mPopreapeeaey P T
o Trd * WINCE.BAT
* ENVIRONMENT VARIABLES
e Laf. Setting Up Command Line Builds
o Re|« BLDDEMO.BAT

* Mapping IDE Commands to Command Line
* Automated Builds

7 @

Module 5 - The Build System 193

The Command Line (continued)

WINCE.BAT

Sets up the build environment

Should not normally be called directly

Uses these input parameters:

Target CPU architecture (% TGTCPU%)
Target OS Design name (%_TGTPROJ%)
BSP name (%_TGTPLAT%)

Calls other batch files for additional configuration
%_PROJECTROOT%\%_TGTPROJ%.bat
%_TARGETPLATROOT%\%_TGTPLAT%.bat
%_WINCEROOT%\developr\%USERNAME%\setenv.bat

Used by the IDE as well

Wince.bat prepares the development workstation build environment by using three input parameters to
determine the build environment, the location of the source files used during the build process, and the files
created during the build process.

When Wince.bat is executed, it uses the following three input parameters to set the environment variables
specific to the Windows Embedded CE project. These variables are used throughout the build process to build
the appropriate targets.

%_TGTCPU%

%_TGTPROJ%

%_TGTPLAT%

%_WINCEROOT% must be set before running Wince.bat. Otherwise, Wince.bat reports an error and exits.
Wince.bat continues to set a series of environment variables. In addition, Wince.bat calls several batch files,
which can also contain environment variables.

In addition, Wince.bat calls several other batch files which can also contribute variables to the build
environment. These include

%_TGTPLAT%.bat - Sets OS Design-dependent environment variables related to the OS Design. This must be in
the %_WINCEROOT%\Platform\%_TGTPLAT% directory.

%_TGTPROJ%.bat - Sets project-dependent environment variables. Each configuration and demonstration
project folder in the Public directory contains a batch file named after the corresponding project. This must be
in the %_PROJECTROOT% directory.

Setenv.bat -Sets private environment variables for the build window. This must be in the
%_WINCEROOT%\Developr\%USERNAME% directory.

Wince.bat is also called by the IDE to setup the same build environment for IDE builds. There are several
environment variables that the IDE sets before calling wince.bat configuring it to use the directory structure
under OSDesigns. If these environment variables are not properly defined, the OS Design folders will be
defaulted to locations in the PUBLIC tree. In general, you should not be calling wince.bat directly so this should
not be a concern. If you need to call it for some reason, examine the batch file to see how it sets up the build
environment.

Module 5 - The Build System 194

The Command Line (continued)

ENVIRONMENT VARIABLES

Variables that define OS components in OS Design
SYSGEN_PM Power manager
SYSGEN_IESAMPLE IE browser application

Variables that provide additional control
BSP_xxx
Include specific components in BSP
BSP_NOxxx
Exclude specific components in BSP
IMGxxx
PRJ_xxx

BSP environment variables define the level of optional support available with a board support package (BSP).
There are two categories of BSP environment variables:

BSP variables are used to choose a default driver implementation for each class of device. For example, if your
target device uses an RTL8139 NIC, set BSP_NIC_RTL8139 = 1.

BSP_NO variables are used to define options not supported by a BSP or target device. For example
BSP_NOAUDIO - would exclude support for audio.

IMG environment variables remove modules from the image being built. These variables leave the associated
registry entries in your OS Design intact. If you set or unset an IMG environment variable in your OS Design, you
do not have to perform a full rebuild of your run-time image. Instead, you can simply run the Make Image tool
to create the new run-time image. These variables are available for your convenience and are not for use in a
shipped product. Example: IMGNOKITL - Selects a kernel that is not KITL-enabled.

PRJ environment variables enable project-specific functionality in your OS Design.
Example: PR]_BOOTDEVICE_ATAPI - Enables ATAPI as the boot device

Module 5 - The Build System 195

The Command Line (continued)

Setting Up Command Line Builds

Open a command shell build window within the IDE

Build | Open Build Release Directory... menu option

Open a command shell build window outside the IDE
Use PBXmlUtils.exe
Can create build window batch file
Can open build window directly using shell extension
OS project must first be created from within IDE
Requires .pbxml file defining the OS Design

pbxmlutils /getbuildenv /workspace “%_WINCEROOT?%\PBWorkspaces\<0S Design name>\<0S Design name> pbxml"
Iconfig “<BSP>: <Target device>" > SetEnv.bat

There are several ways to get a command line build environment that can be used for your OS Design. You can
open a build window from within the IDE using the Build menu. This option is best for day to day development,
but doesn’t work in automated build environments.

Platform Builder also provides an executable that will set up an appropriate build environment for you based
on your OS project file (pbpxml). This option requires that you have already created the OS Design using the
Platform Builder plug in for Visual Studio, and you have a pbpxml project definition. You can use the
pbxmlutils.exe utility to create a build window shortcut, or to create a batch file that will setup the build
environment for you.

You could create the build environment yourself by calling wince.bat with the appropriate parameters, but this
is not recommended.

Pbxmlutils:
http://msdn2.microsoft.com/en-us/library/ms924887.aspx

Module 5 - The Build System 196

4 N
\The Command Line (continued)

N\

» Blddemo.bat

“blddemo <no parameters>"
* Includes compilation of source code in PUBLIC trees
* Not recommended!

Pre-Sysgen

“blddemo -q”

* Skips Pre-Sysgen Build phase (g means quick)

* Does not clean directories first

* Adding “clean”; cleans the cesysgen folder first

Sysgen

“blddemo -gbsp”

* Skips Pre-Sysgen and Sysgen phase

* Incremental build of platform code and subprojects
* Includes buildrel and makeimg

* Adding “-c”; does a rebuild

Post Sysgen Build

v VU

A 4

| “blddemo -norel -gbsp” Stops here> Buildrel
v
| “blddemo -nomakeimg -gbsp” Stops here> Makeimg

N y

BldDemo.bat is the primary interface to the unified build system in Windows Embedded CE. This tool is used by
the IDE to completely build the OS run-time image. It calls various other internal batch files to complete each
of the build phases. Blddemo can be used in a command line environment; the unified build architecture
means that builds performed from the IDE use exactly the same tools and processes as those performed from
the command line.

Module 5 -

The Build System

197

s

N The Command Line (continued)

7

* Mapping IDE Commands to Command Line

N o = - o=

Window Community Help

!m\ Debug Target Tools
I 1. blddemo £ Build Solution (2) F1
Rebuild Solution (3) Ctrl vl
| 2. blddemo -q i Clean Solution
{4 Build TrainingOSDesign (2)
| 3. blddemo clean -q i Rebuild Training0SDesign (3)
Clean TrainingOSDesian
| 4. blddemo clean cleanplat -c ABdvanced Build Commands N
by

| 5. blddemo -gbsp

| 6. blddemo -qbsp -c

| 7. buildrel

| 8. makeimg

Build All Subprojects

Rebuild All Subprojects

Build All SDKs...

na Copy Files to Release Directory ®

‘ Make Run-Time Image
@ Open Release Directory in Build Window

o Global Build Settings

j Targeted Build Settings
Batch Build...
Configuration Manager...

= Platform Builder { TGTCPL » (8 busenum

Sysgen @ B
Clean Sysgen @ 4
Build and Sysgen @ il
Rebuild and Clean Sysgen @

Build Current BSP and Subprojects ®
Rebuild Current BSP and Subprojects

obaddad FE Eved

|

Mon, 07 May 2007 18:36:03 GMT - P2
of Windows Embedded CE 6.0,

Win A Trip To New Zealand Throug |
Thu, 29 Mar 2007 20:33:23 GMT - Fro |
2007, when you SUBSCRIBE and/or C/
Flash newsletter you'll be automatici|
win a grand prize trip to New Zealar|
trip airfare for two, 10-day 9-night st |

Module 5 - The Build System

198

-

kThe Command Line (continued)

7

e

» Mapping IDE Commands to Command Line

ft Visual Studio - —— & -
Build l Debug Target Tools Window Community Help
Y| &5 Build Solution F1 ¥« Platform Builder CTGTCPL = | [# busenum
Rebuild Solution Ctrl+Alt+F7 3
l'l Clean Solution
(¥4 Build TrainingOSDesign
1 Rebuild TrainingOSDesign n
Clean Training0SDesign Ud IO 2005
Advanced Build Cornmands >]
4 Build All Subprojects ows Embedded Develope
3 Rebuild All Subprojects [} load ¥ CEGOI
§ Build All SDKs... Thu, 17 May 2007 20:55:06 GMT - You ca
™ % X ‘Windows Embedded CE 6.0 Platform Bui
a Copy Files to Release Directory wias announced during MEDC 2007 in La:
¢ Make Run-Time Image Mobilize: Explore The New Features In
o Bl Open Release Directory in Build Window ::‘::LFLE'I” May Iﬂﬂiﬂ::ﬁ:l]} GET - Paul ¥
pl| Global Build Settings » | |Z| Copy Files to Release Directory After Build k
i Targeted Build Settings be s [¥] Make Run-Time Image After Build v
: Q ¥ rrar
L Batch Build... /| Frash newstetter youll be ey e
o Configuration Manager... wan a grand prize trip to New Zealand. Tt
! - triv airfare for two. 10-dav 9-niaht stav a!

P

Global settings are used for OS build selections and Targeted build settings are used for BSP, component, and

other targeted build selections.

The make image phase will not run if connected to the target as the nk.bin will be in use.

Module 5 - The Build System

199

s

kThe Command Line (continued)

7

» Mapping IDE Commands to
Command Line

» Build & Rebuild apply to
subprojects as well

I 1. set wincerel=188&build

| 2. set wincerel=1&&build -c

3. SysgenPlatform %_TARGETPLATROOT%
preproc&&SysgenPlatform %_TARGETPLATROOT% postproc

4, blddemo -gbsp

5. blddemo -ghsp -c

@

[Solution TrainingOSDesign’ {1 project) |

= @ TrainingOSDesign
= R C/WINCESDD
& [PLATFORM
@ (3] ARUBABOARD
& (33 CEpC
@ (3§ COMMON

1 (3 DEVICEEMULATOR

) 8§ H4SAMPLE
- (31 MAINSTONET

o (3

[Training0sDe:

4
- (34 T5530
I
- (3 VOoIP_f
@[3 PRIVATE
®- 3 PUBLIC
oy Favorites
- [Parameter Files
= (B9 SDKs
&) K1
= (= Subprojects
@ (30 HeapTestl (C:A
& (5 MyHelloWarlds

« ni
Q_Snlulion « (@ Cataloglt..|

Output

Show output from: Windows
16383676 PID: 330076 T
16353580 PID:3c30076 T. l.[}

'H BB

guild (1)

Rebuild

spgen ()

Build and Sysgen @
Rebuild and Clean Sysgen

Open

Open With...

Add

Exclude from Build
Find in Files...
Explore

Show in Favorites
Open Build Window
Properties

16353747 PID:3¢c30076 TID:

CRIT

Module 5: The Build System 200

The Command Line (continued)

Files to Avoid Checking in to Version Control

These files in the BSP tree should not be checked into
your version control system

BSP tree is located in the %_TARGETPLATROOT% folder, i.e.
%_WINCEROOT%\Platform\MyBSP

Opening with Platform Builder creates <OSDesign>.bif

Building the platform creates Build.dat, Build.log, and
potentially Build.wrn and Build.err in the BSP tree root.

Compiling stage creates .\obj*.* in compiled folders.
Linking creates files in .\lib\... and .\target\... folders.

Platform ‘sysgen’ step creates . \cesysgen\files*.*

Module 5: The Build System

201

The Command Line (continued)

Project and OS Design Files to Avoid

Output files created by sysgen
%_PROJECTROOT%\CeSysgen
%_PROJECTROOT%\SysgenSettings.out
%_PROJECTROOT%_CEBASE_FEATURES.txt

BUILDREL output
%_FLATRELEASEDIR%

SDK output
SDKs\<sdkname>\MSl|
SDKs\<sdkname>\obj

Solution files
<0SDesignName>.ncb, .suo, .pbxml.user

In general, do not check in files that are outputs of the build process.

Module 5 - The Build System

202

The Command Line (continued)

Automated Builds
Save log files & console output

Compress & save %_FLATRELEASEDIR%

Can be convenient for error regressions & other testing

Presence of build.err or absence of nk.bin is failure

Module 5 - The Build System

203

-
kThe Build System

7

e Directory Structure of the Build Tree

e The
e The

Build Process
Build Tool

e Lab 5.1 — Static and Dynamic Libraries

e The

Command Line

» Lab 5.2 — Building With the Command Line

Al '} I~ .

e Tro
e Lab

e Re\

* Lab Goals
1. Learn how some of the build commands
available in the Visual Studio IDE map to
command line actions
2. Compare IDE and command line build
mechanisms

* Video

7 @

Module 5 - The Build System

204

-
N The Build System

7

e Direct

ory Structure of the Build Tree

e The Build Process
e The Build Tool

e Lab 5.

1 — Static and Dynamic Libraries

e The Command Line

e Lab 5.
» Troub
e Lab 5.

2 — Building With the Command Line
leshooting a Build

2 Traiihlachnntina linly Evearc

e Reviey

* Build Output Window
* Build Log Files
* Errors

Module 5 - The Build System

205

’/

\Troubleshooting a Build (continued)

/’_
» Build Output Window

«» Starting the build

N\

BLODEND: Generating 05 Design Folders
BLODEMO: Done Generacing 08 Design Folders

BLDDEMO: Done Generating 08 Design Files
CEBUILD: Deleting old build logs
CEBUILD: Skipping directly to SYSCEN phase

CEBUILD: Punning sysgen preproc {(for COMMON)
Starting svegen chase for vrodect [common)
« i

3 Output (4 Pending Checkins

Qutput -0 x
Show output from: Build - I Y]

------ Build Project: Trai . Conf: ion: TrainingBSP ARMVAI Release Platform Builder (_TCTCPU) ======

Starcing Build: blddeso -g

Canerating 05 Design Files vo C:\VWINCESOD\OEDesigns)\TrainingliDesign\TrainingdiDesign\Wincet00\ TrainingB Sl ARMV4T\oak

Building dep trees: winceos deom gdiex ie script servers shellsdk shell rdp wceshellfe wcesppsfe directz woip datasync netcfv? SOLCE cellcor

N

J

The build output windows provides information for various phases of the build. Here we see the start of a build.

Note that this build is running the command “blddemo -q”.

Module 5 - The Build System

206

Troubleshooting a Build (continued)

Build Output Window
Starting the sysgen phase

Output >0 x
Show output from: |Build . A8 (=

CEBUILD: Skipping directly to SYSCEN phase -
Building dep trees: winceos dcom gdiex ie soript servers shellsdk shell rdp vceshellfe voeappsfe directx voip dacasync neteofv? SOLCE celleo:
CEBUILD: Punning sysgen preproc (for COMMON)

Starting sysyen phase for project { common]

User selected the following STSCEN variables

sysgen_sudio=l

sysgen_suth=l

sysgen_auth_ntlu=l

sysgen_auth_schannel=1

svsgen sucerassl)

2] Output [g&Pending Checkir

During the OS Design generation, or Sysgen phase, the build system sets or clears Sysgen variables.

The inclusion of Sysgen variables is typically based on the selection of Catalog items that you include in your OS
Design. The relationship between Sysgen variables and Catalog items can vary. A Catalog item might
correspond to more than one Sysgen variable.

The build system determines which variables to set or clear by processing the Cesysgen.bat files associated with
the OS Design, which are in %_WINCEROOT%\0SDesigns\<OS Design name>\0ak\Misc.

The master Cesysgen.bat file manages a set of subordinate batch files that correspond to the dependency trees
included in the OS Design. The build system uses these variables to link the corresponding static libraries into

modules.

The build system also filters the header files, creating headers that only contain prototypes for the functions
exported by your OS Design. Import libraries for the modules are also created during this phase.

The filtered header files and import libraries are included in the software development kit (SDK), which others
can use to create applications that run on the new OS.

Also, OS Design configuration files are filtered to create a new set of configuration files specific to your OS
Design, which are used in the Make Image phase.

At the end of the Sysgen phase, the board support package (BSP) is built.

Module 5 - The Build System

207

-
N Troubleshooting a Build (continued)

7

BUILD: [00:0000000003: PROGC |

» Build Output Window
» Starting the build of a BSP

T _s, - .

SMwou@utl-om Build
" BUILD: [BU 0000000001 PROGC] Build searted in d.tl'ltlotv ot \vmuun\vurrnmrrmsp M|
BUILD: [00:0000000002: PROGC | Checking for C:\ axe.

Purning passes WCEFILESO, HIDI. MC, ASN, THUNK, PRECOMPHEADER, COMPILE, LIB, LINK, MANACEDRESX, MANACEDMOD, M/

Bi\r.lw: 100: 00000000A2: PROGE |
« e

(3 Output [FRPending Checkins

BUILD: [PROGC | include file dependencies:
BUILD: 2PROGC) tor SDE include c: ine.
BUILD: [00:0000000006: PROCC | Scan C: PLATFORM: TrainingB SR\ SRO\COMMON, AN\ FHDY SMPLASHDY
BUILD: [00:0000000007: PROGC | Scan C: PLATFORM\ A FHD SHFLASHEN i"!:
BUILD: [00:0000000008: PROGC | Scan C: PLATFORHY MDY =
BUILD: [00:0000000008: PROGC]| Scan C: \Umum\sutmmnnmnnshnucmmm\mumom\
BUILD: [00:0000000010: PROCC | Scam C: PLATFORM\ L COPPEON ' AMD, FHD Y AMDHODD,
BUILD: [00:0000000011:PROGC | Scan C: PLATFORMY SRC, COMMONLAMDADLLY
Sean C; PLATFORMY BUSY <o

\.

At the end of the sysgen phase a build of the BSP starts.

Module 5 - The Build System

208

Troubleshooting a Build (continued)

Build Output Window
Starting the buildrel phase

Output
Show output frorm: Build - & D

2 tileis) copied.
BUILDREL: Using copylink command
BUILDREL: cleaning up *C:\WINCEEOOY s\ T gn\ T gn\RelDiryT _KPIVAI_Releas
localization and project files
Done Cenerating PEWorkspace localization and project files
BUILDREL: Copying SYSCENED binaries from C:\WINCEE00\0SDesigns\Trai SDasigni Trai D\ \Tra

e

AngBEP_ARMVI\casysgenioak

BUILDREL: Copying SYSCENED files from C:\WINCEE0O\0SDesigms\Tr, I Tr D v AT BEP_ARMVEIY yEg oak’ files
BUILDREL: Copying PROJECT(Training0SDesign) binaries from C:\WINCES00)05Designs\Tr qm g \T gBSP_ARMVS
BUILDREL: Copying PROJECT(Training0SDesign) files from C:\WINCEE00)\0SDerigns’Trai 1gm Trad 1gmy \TH _ARIV4TING

BUILDREL: Copying PLATFORM binaries from C:\WINCEEO0O\platform\TrainingBSP
BUILDREL: Copying PLATFORM files from C:\WINCES0O\platform\TrainingBSP\files
BUILDREL; Covvinag PLATFORN cesvecgened files fros C:\WINCESOO\olatfors\TraininaB3P\cesveoenifiles

3 Cutput (JPending Checkins

During the Release Copy phase, the build system copies all files that you need to make a run-time image to the
release directory. The modules and files created during the Sysgen phase are copied to this directory first,

followed by the files created in the Compile phase.

This part of the build output window is showing the building of a release directory (buildrel) phase involves
copying files from the first two phases into a single directory. The net result is a collection of all the files that

are to be included in the operating system image in a single place.

During the Release Copy phase, binary image builder (.bib) and registry (.reg) files are propagated to the
Release directory. However, if your headers and libraries are up-to-date, this phase might not be executed. If
you make changes in these files, verify that Copy Files to Release Directory After Build and Make Run-Time
Image After Build are selected; then from the Build menu in Platform Builder, run Build and Sysgen to ensure

propagation of the changed files.

Module 5 - The Build System

209

Troubleshooting a Build (continued)

Build Output Window

Starting the makeimg phase

Output

Show output from: Build . AR (B
BUILDREL: Copying PLATFORM cesysgened files from C:\WINCEGOO\platform\TrainingBSP\cesysgen)files
BUILDREL: Copying PLATFORMCOMMON binaries from C:\WINCEE0O\platfors\common

1 File(s) copied

BLODEMO: Calling Hakeinmg -- Flease Vait

makeing for Windows CE (Release) (Buile on Jul 10 2006 16:41:09)

sakeing: Change directory to C:A\WINCEEOOD.

makeing: run command: cmd /C C:\WINCEE0O\publicicommon\ocak\misc\pbpremakeing
Generating FEWorkspace Custom makeimg build step batch Files to C:\WINCES00)0SDesigns)\T:
Done Generating PEWorkspace Custom makeimg build step batch Files

oA T L Tr

makeing: Check for C:\WINCES00\05Designs\Training0SDesigniTraining0sDesign\RelbiriTrainingBSP_ARMVAI_Release\PreMakeIng.bat to run.
makeing: Pound localization settings.

sakeimg; LOCALE: 0403 LOCALE3: (null) TargesDir: 0409 CodePaseslZ5Z Localeld: 409 Primarviandld: 3 Sublanold: 1

3 Cutput (JPending Checkins

During the Make Run-Time Image phase, the files in the release directory are combined to create a run-time
image, typically named Nk.bin.

At the beginning of the phase, the project-specific files, which include Project.bib, Project.dat, Project.db, and
Project.reg, are copied to the release directory.

Localization tasks performed during this phase include the attachment of resources to executables and string
substitutions for configuration files, based on the selected locales.

This part of the build output window is showing the make image (Makeimg) phase involves taking all the files
from the build release directory and merging the files into a single file. This single file is what you download to

the reference platform hardware. This file, when packaged for downloading to a bootloader, is named NK.BIN
by default.

Module 5 - The Build System 210

4 N
kTroubleshooting a Build (continued)

7

AN

» Build Output Window

» Successful build

Output -0 x
Show output from: Build - A 5=
Directory of C:\WINCEE00\DSDesiqms\Tr o\ o\ RelDiry '_ARMV4AI Release
10/19/2007 09:53 AN 19,258,067 NK.bin
L Fileis) 12,259,067 bytes

0 Dir{s)} 100, 902 248 448 bytes free

Training0SDesign build compl
Training0Shesign = 0 erroris), 3% wvarning(s)
Build: 1 ded or up-to-date, O tailed, 0 skipped =sssssszss

n

(3 Output [} Pending Checkins

Module 5 - The Build System 211

Troubleshooting a Build (continued)

Log Files
build.log
build.wrn

build.err

Hame Datemodified Type w | RIACTINY 3y3g8n e TR T
CRC nd localized resources for Languages ¢
[Decument O%Duiigns 0404 0407 040C 0410 0411 0412 0413 0416
P M 410 A
E Pitue OTHERS (419 (41D 0804 0C08) |
m Mus PLATFORM microsoft (R) PFDEI‘JM Maintenance IJI‘.’.‘Iy
| PRIVATE version CE-8,00.1863.0
e W B copyright (C) Microsoft Corporation, all
uBLIC rights reserved.
Folders v K
| Visual Studo § —pasilet ;?Ing/n\-:-é ﬁf‘-,.;efi‘c'" {release) (pullt on Jun
i —paied makerile. def: Invoked with predefined
buildlog settings:
ARICER, buildwm TARGETHAME: dummy
CRE TARGETTYPE : dummy
0%Designs RELEASETYPE:
t OTHER . £
Litern sebected 418 ME M Computer

The Build logs are central to troubleshooting build errors. During the build process, Build.exe generates several log files in
the root directory where it was called.

Build.log - Contains a log of commands invoked by Nmake.exe.

Build.wrn - Contains a list of warnings generated during the build process.

Build.err - Contains a list of errors generated during the build process.

Note that Build.err won’t be created if there aren’t fatal errors, so in the screen shot above it is happy news that the file
isn’t present. Detecting if this file is present or not is one tool in automating build processes.

Seeing what worked and where you stopped can help you narrow in on the phase that the build error is occurring. Once you
know what phase you are in you can apply the particular tips for those areas. What you would like to see at the end of the
build is zero errors.

Build messages typically use the following format.
Copy CodeBUILD: [NN:SSSSSSSSSS:TTTTTT] Message

NN - In multi-threaded builds, this specifies the ID of the thread in which the error occurred.
SS - Sequence number of the build message. This number increases with each build message.
TT - Type of message.

Message - Description
ERRORI - Error detected by Build.exe.
ERRORE - Error detected by an external program, such as Link.exe or Cl.exe.
WARNS - Serious warning detected by Build.exe.
WARNN - 'Normal' warning detected by Build.exe or an external program.
PROG - Progress.
PROGC - Console progress.
INFO - Informational message.

Module 5 - The Build System 212

Troubleshooting a Build (continued)

Errors During the Sysgen

Caused by missing files, missing configuration of the operating
system features, and applications built during the Sysgen
phase

Errors During the Module Build Phases
Compilation errors or unresolved link errors

Syntax errors
Errors During the Buildrel Phase

File copy errors

Errors During the Makeimg Phase
Romimage.exe failed in CE.BIB
Romimage.exe failed in reginit.ini

Warning: Image exceeds ...

Errors During the Sysgen Phase
Errors in the Sysgen Phase are usually caused by missing files. Errors can also be caused due to missing
configurations of the operating system features or applications built during the Sysgen phase. Examine build.log
to determine specific problems. Determine if you have modified any components under the \Public tree.

Errors During the Build Phase
Errors in the build phase are usually compilation syntax error or unresolved link errors. Examine build.err for

specific problems.

Errors During the Building a Release Directory (buildrel) Phase
In this phase, you get file copy errors. This can be due to out of disk space, locked files or read only files. Check
your hard drive for enough space, check if you have a text editor open on a file in FLATRELEASEDIR and think if
you’ve manually copied something in which could be read only. Check the build.log for more information about

the errors.

Errors During the Making an Image (makeimg) Phase
Errors in this phase can be caused due to missing files in the Flat Release directory. This could be the possible
result of previous errors or Bib file errors. Check the build.log or build.err to determine the specific problems.
The common Makeimg errors are:
* Romimage.exe failed in CE.BIB
This occurs due to missing files in the Flat Release directory, which have entries in one of the BIB files.
* Romimage.exe failed in reginit.ini
This error is caused due to syntax errors in the CE Registry.
* Error: Image exceeds
This error is caused by building an image that is larger than the amount of NK space you specified in config.BIB.

Module 5 - The Build System

213

-
kThe Build System

7

e Directory Structure of the Build Tree

e The Build Process

e The

wailed Toanl

elab 5
e The C
e lab5s

* Lab Goals

1. Identify linker errors
Learn how to determine the correct link lib
Resolve link errors

2.
3.
* \Video

e Trou

CoOMUuULlITg a wunuv

» Lab 5.3 — Troubleshooting Link Errors

e Review

7 @

Module 5 - The Build System 214

f)
The Build System

. S

/ B

e Directory Structure of the Build Tree

e The Build Process

e The Build Tool

e Lab 5.1 — Static and Dynamic Libraries

e The Command Line

e Lab 5.2 — Building With the Command Line
e Troubleshooting a Build

e Lab 5.3 — Troubleshooting Link Errors

» Review

Module 6 - The BSP

215

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

The Board Support
Package

Module 6 - The BSP

216

p
. Course Outline

.

7

e Module 1:
e Module 2:
e Module 3:
e Module 4:
e Module 5:
« Module 6:
e Module 7:
e Module 8:
e Module 9:
e Module 10:

e Course Introduction

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development
Testing & Verification

e Course Review

Module 6 - The BSP 217

" The Board Support Package

BSP Overview
» Platform Common Code

BSP Components

Lab 6.1 — Registry Initialization

Creating a New BSP
» Lab 6.2 - Adding a New IOCTL to an OAL
» Review

Module 6 - The BSP 218

The Board Support Package

BSP Overview

'« What is a BSP?

= Subdirectory that contains hardware
specific code
* Bootloader
* OAL
* Drivers
* Configuration files
* 1to 1 typical mapping between hardware
platform and BSP
* Required to build OS

A board support package (BSP) is the common name for all board hardware-specific code. It typically consists of
a boot loader, OEM adaptation layer (OAL), configuration files, and board-specific device drivers

The BSP creation process involves the following tasks:
Developing a boot loader

Developing an OAL

Creating device drivers

Modifying run-time image configuration files

If you do not have a BSP, you can create a new one or clone an existing BSP that is designed for similar
hardware.

If you have an existing BSP for a previous version of Windows Embedded CE, you can migrate or update it to be
fully compatible with the features in Windows Embedded CE 6.0.

Module 6 - The BSP 219

BSP Overview

Where Are BSPs?
OEMs/device makers provide BSPs for their devices

Microsoft provides sample BSPs for each of the
supported processor architectures
Sample BSPs are for a particular hardware reference design
. Sample BSPs are in the Platform folder

Build your own or clone

Module 6 - The BSP 220

" The Board Support Package

» Platform Common Code

* Source code for routines common to
multiple BSPs

* Promotes reuse

) & * Promotes uniformity
.| * Promotes modular approach

* Exposed to BSPs as libraries

* % PLATCOMMONLIB%\<libs>

* Not mandatory to use common code

* No hardware platform specific
dependencies

The SOC directory is new for Windows Embedded CE 6.0. The contents of the Windows CE 5.0 CSP directory has
been restructured and migrated to the SOC directory.

Module 6 - The BSP 221

' i N
. Platform Common Code)
e N

» %_WINCEROOT%\Platform\Common

» Abort Handlers, Boot, Cache, Flash, Interrupt, IOCTLS, KITL,

Log, Memory Map Support, PCl, Persistent Registry, Power
RTC, Timer, More ...

« Support based on architecture
- ARM, MIPS, X86, SHX

» Support based on SOC

r

[|
lw /5 = PiaTroRM + common » SAC v 0C & | P 5
| Folden v N [Typt San Tage
& PMATFORM HOGLB TN ORALPILI0 M VL
b ARUBABOSSD
A CEPC ! F
b COMMON CAARFEI1Y_MI VL PXAYTH S VL
b])
b e
b 2ava SHITHE ME ML ARALTL M5 VL
b EoMMOH } |
b e i .
L s VRIS ME V1 VRCSETT MEVL
i) I
k 30c o dn
L | ¥
4 targat
b DEACEEMULATOR -
10 e Dk free space; S0 68} - ¥ Computer

Module 6 - The BSP

222

p
kThe Board Support Package

7~

e BSP Overview
e Platform Common Code

» BSP Components

@ Lab 6.1 — Rooictey lnitislizatinm

e Creating {
e Lab 6.2 -
e Review

* Boot loader

* OAL

* Drivers (We will discuss this in
the next module)

* Files

\

Module 6 - The BSP 223

BSP Components (continued)

Bootloader

The Bootloader is the first software component that runs
on a target hardware device

Purpose
Initialize hardware

Perform any device specific action that needs to occur prior to
booting the operating system

Load the operating system image into memory
Jump to the operating system entry point

Typically implemented as a separate component
Will have its own .bib file

The bootloader is the first software that runs on a Windows Embedded CE based device. Its primary purpose is
to initialize the hardware, load the operating system into memory and jump to the operating system entry
point. The bootloader can optionally perform other tasks as required by the device OEM.

The bootloader is almost always implemented as a separate component (i.e. built separately from the 0OS). This
allows the bootloader and OS to be updated independent of each other. It is possible, but not recommended,
for the bootloader functionality to be incorporated directly into OAL startup code.

Module 6 - The BSP

224

BSP Components (continued)

Boot loader (continued)

Windows Embedded CE does not impose any restrictions
or requirements on loader code except to call OS entry
point with MMU off and hardware properly initialized

OEMs have unique needs for custom boot loader
functionality
Support custom user interface for low level device management
Diagnostics
Load operating system from various resources

BLCOMMON library provides one possible
implementation framework

Do not assume that a boot loader will be implemented
following any particular standard

CE 6.0 does not impose any particular requirements on the bootloader except that it eventually cause the OS
entry point in the kernel to be called with the MMU off and hardware properly initialized. This lack of hard
requirements means that device OEMs have virtually unlimited flexibility in how they implement their
bootloader. OEMs often include extended functionality such as a primitive user interface, hardware
diagnostics, flash memory management functions etc. Devices that store the operating system image in flash
memory often use the bootloader to update the OS image.

Device OEMs can implement all of this in any manner they like. Do not assume that functionality present in one
bootloader is present in another device from a different manufacturer.

Module 6 - The BSP

225

BSP Components (continued)

Boot loader (continued) BLCommon Basic Flow

Boot loader Framework
(BLCOMMON)

Components located in

WINCE600\PLATFORM\COM

MON\SRC\COMMON\BOOT
Base framework simple
Initialize hardware =
Call BootloaderMain() OEMDebuglnit
Implement required callbacks

'_:-.QEM Platforminit

Use other Common libraries
as needed

Supports integration with
Platform Builder tools

Download images across
debug connection

Extensible

The Common code includes a framework (often called BLCOMMON) that can be used to implement a Windows
Embedded CE bootloader. The framework primarily supports integration with the Platform Builder tools
allowing OS images to be downloaded using the IDE. The framework consists of a common bootloader function
in BLCOMMON that calls back into the BSP at a number of defined points. The BSP callbacks allow the OEM to
implement custom functionality specific to the device. The BSP developer can also make use of other Common
libraries as appropriate (caches, PCl etc).

This slide demonstrates the basic implementation of the BLCommon bootloader. The functions in bold are
some of the functions that the BSP must implement for a BLCOMMON based bootloader. The OEM has great
latitude to implement platform specific functionality in the various callbacks. Note that this slide does not
represent the complete functionality of the BLCommon framework.

Startup()

Low level function that initializes hardware and calls C entry point.

Main()

High level entry point. Calls BLCOMMON framework entry point, BootloaderMain()
BootloaderMain()

Implements bootloader control loop, calls back into BSP at defined points.
OEMDebuglnit()

Initializes debug transport, usually debug serial port.

OEMPlatforminit()

High level platform initialization. Often customized to implement device specific functionality e.g. bootloader
menu

OEMPreDownload()

Called prior to image download. Determine whether download should occur.
OEMWriteFlash()

Platform specific flash algorithm. Called if downloaded image needs to be written to flash.
OEMLaunch()

Launch operating system image

Module 6 - The BSP

226

BSP Components (continued)

OAL

The OAL (OEM Adaptation Layer) is the platform specific interface
between the kernel and the device hardware
Purpose
Handles interrupts, timers, power management, etc.
Implements the operating system entry point
Essentially is the kernel “process” containing kernel mode DLLs

OAL and Kernel are not a single integrated component

OAL is exe; Kernel is dll
OAL implements a certain set of required functions and optional
functions

Many functions - see help

Can use libraries from Platform\Common
Or even copy source and modify
Some libs require specific callbacks, structures, and/or variables

Supports single level of trust model if desired
Untrusted application will not run

The OEM Abstraction Layer (OAL) is the layer between the operating system kernel and the device hardware.
The OAL contains the hardware specific implementations necessary to handle interrupts, timers, power
management etc. The OAL “abstracts” the custom device hardware to well known interfaces exposed to the
kernel. This allows the common Windows Embedded CE kernel to run on unique hardware devices.

The OAL has a set of required functions that must be implemented in order to interface with the operating

system kernel. These functions can be implemented directly in the BSP, or the BSP can leverage the Common

libraries. The Common libraries provide implementations for many of the required OAL functions. These
implementations are included in the OAL simply by linking to the correct Common library when building
OAL.EXE.

An OAL architecture that is based on the Common libraries is referred to as a Production Quality OAL or PQOAL.

This is does not mean that an OAL that does not leverage these libraries is not of production quality, it simply
doesn’t implement the PQOAL architecture. The reference BSPs provided by Microsoft use the PQOAL
architecture.

Many of the implementations in the Common code have dependencies that must be resolved in the BSP.
These include both functions and data structures. These BSP callbacks are the mechanism that allows the

Common code to be utilized with a customize hardware implementation. These callbacks are typically easier to
implement than the actual function, and make the platform specific customizations more obvious. This reduces

the complexity in porting the BSP to a different hardware platform.

The Common code has a rich set of functionality that should be leveraged when creating a new BSP. However
the degree of Common code use will vary depending on the BSP. It’s important to note that the Common code
is not one single component, but a rich set of functionality that can be leveraged as needed. There is no need

to change a working BSP implementation for the sole purpose of leveraging Common code functions.

Module 6 - The BSP 227

BSP Components (continued)

OAL Structure
OALLIB

Contains BSP specific OAL functions
Builds as library that will eventually link with others to create
OAL

OALEXE

Contains sources file with build instructions for OAL.EXE

Links OAL.LIB along other Microsoft supplied libraries to create
OAL.EXE

OAL.EXE is renamed to NK.EXE during build process

The OAL is built in two stages. The BSP specific source code is built into a library called OAL.LIB. This library is
then linked with a number of other libraries to create the final OAL.EXE component.

Note that in Windows Embedded CE6.0 only a single version of the OAL is built. There is no longer a need to

build separate versions to support profiling and the Kernel Independent Transport (KITL). This is a result of the
separation of the kernel from the OAL.

The OAL.EXE component is renamed to NK.EXE during the makeimg phase of the build process. NK.EXE is the
traditional name of the kernel in the operating system image. Previous versions of the operating system built
multiple versions of the kernel in the BSP to support combinations of kernel profiling and KITL. One of those
versions was selected based on configuration options and given the common NK.EXE name.

Module 6 - Th

e BSP

228

7

X BSP Components

-

\.

» OAL APIs
InitClock

OEMARMCacheMode

DEMCacheRangeFlush

QEMClearDebugCommError

OEMDataAbortHandler

OEMFlushCache

OEMGetExtensionDRAM

DEMGetRealTime

Description

Required. This function initializes the CPU clock and set the system tick
interval frequency.

This function sets the cache mode used to build the ARM CPU page tables.

This function flushes or invalidates a certain range of the cache or
translation look-aside buffer (TLB). It is used by the kernel.

This function clears and initializes the serial communications port.

This function handles base-register updates and is specific to ARM
processors, excluding StrongARM and XScale. It is called from the kernel
when a data abort occurs.

This function responds to a CacheSync function request. It is used by the
kernel.

This function gets information about extension dynamic RAM (DRAM), if
present on the device.

This function retrieves the time from the real-time clock. It is called by the
kernel.

\

/

Refer to the OEM Adaptation Layer Reference in MSDN for complete OAL programming element descriptions.

http://msdn2.microsoft.com/en-us/library/aa913478.aspx

Module 6 - The BSP

229

p
g BSP Components

P
» OAL APIs (continued)

Programming element | Description

This function places the CPU in the idle state when there are no threads ready to

EMIdI 5
OEMidle run. It is called by the kernel.
OEMInit This function initializes all hardware interfaces for the target device. It is
R implemented by the OEM.
OEMInterruptDone This function signals completion of interrupt processing.

This function performs any hardware operations necessary to enable the

OEMInterruptEnable : ‘
HEEn specified hardware interrupt.

This function handles interrupts. It is called by the kernel when an interrupt

OEMInterruptHandler
occurs.

This function provides a generic I/O control code (IOCTL) for OEM-supplied

OEMIoControl = 5
i information.

QEMNMI This function supports a nonmaskable interrupt. It is implemented by the OEM.

This function captures a nonmaskable interrupt (NMI). It is implemented by an

OEMNMIHandler OEM.

AN

Module 6 - The BSP

230

7

g BSP Components

-

AN

» OAL APIs (continued)

Programming element Description

This function places the CPU into a suspend state and is responsible for any final
power-down state operations. It is invoked when the user presses the OFF button

OEMPowerOff : ! :

DI or when the Graphics, Windowing, and Events Subsystem (GWES) power-off
timer signals that the CPU has timed out.

OEMSetAlarmTime This function sets the real-time clock alarm. It is called by the kernel.

DEMSetRealTime This function sets the real-time clock. It is called by the kernel.

This function retrieves the number of milliseconds that have elapsed since

5C GetTickCount Windows Embedded CE was started. It is called from the OAL.

OEMInitDebugSerial This function initializes the debug serial port on the target device.
OEMReadDebugByte This function retrieves a byte from the debug monitor port.

OEMWriteDebugByte This function outputs a byte to the debug monitor port.

OEMWriteDebugString This function writes a string to the debug monitor port.

Module 6 - The BSP

231

p
g BSP Components

P

L

o OAL IOCTL Codes

IOCTL HAL INIT RTC

IOCTL HAL POSTINIT

IOCTL HAL GET DEVICE INFO

IOCTL HAL DISABLE WAKE

IOCTL HAL ENABLE WAKE

IOCTL HAL GET WAKE SOURCE

IOCTL HAL PRESUSPEND
IOCTL HAL REBOOT

IOCTL HAL RELEASE SYSINTR

I0CTL HAL REQUEST IRQ

10CTL HAL REQUEST SYSINTR

This IOCTL resets the real-time clock by calling the OEMSatRealTime function.

This IOCTL provides the OEM with a last chance to perform an action before ather
processes are started. It is called by the kernel and implemented in the OAL.

This I0CTL returns device information using the system parameters information (SPI)
codes supported by the SystemParametersinfo function.

This IOCTL disables an interrupt source from waking the system.

This IOCTL enables an interrupt source to wake the system.

The IOCTL returns the identifier of the wake event source that awakened the system from
its most recent suspend state.

This I0CTL provides the OAL the time needed to prepare for a suspend operation.
This I0CTL supports a warm boot of the target device.

This IOCTL releases a previously-requested SYSINTR.

This IOCTL requests a hardware-to-IRQ. mapping based on device location,

This IOCTL requests an IRQ-to-SYSINTR mapping.

AN

Module 6 - The BSP 232

BSP Components

Files
Catalog File
Platform Batch File
Config.bib
Platform.bib

Platform.reg

Entries in platform.reg are processed last allowing them to
override other settings

Platform.dat
Platform.db

Module 6 - The BSP 233

p
kThe Board Support Package
-

\

e BSP Overview

e Platform Common Code

e BSP Components

» Lab 6.1 — Registry Initialization
o Cr

* Lab Goals

o Lal 1. Understand which files go into creating the
e Re initial registry

2. Understand which files have precedence in
determining the initial registry
* Video

Module 6 - The BSP

234

The Board Support Package

Creating a New BSP

* Clone an Existing BSP
* BSPs included with Windows
Embedded CE
* BSPs from chip manufacturers
* BSPs from other 3rd parties
* Modify as necessary
* Boot loader
 OAL

* Drivers
* Configuration files

* Get KITL working early!
* Test

Microsoft provides a BSP certification process for those interested. For more information on this program check

out:

http://msdn2.microsoft.com/en-us/embedded/bb397378.aspx

The first step of creating a BSP is frequently to decide what BSP to use as a starting point. One that decision is
made the BSP chosen should be cloned to create the starting point for the new BSP. Once cloned the level of
effort could be as simple as basic modification or as complex as a removing most of the functionality leaving a

basic skeleton as the starting point.

Module 6 - The BSP 235

p
kThe Board Support Package
-

\

e BSP Overview

e Platform Common Code

e BSP Components

e Lab 6.1 — Registry Initialization

e Creating a New BSP

» Lab 6.2 - Adding a New IOCTL to an OAL

o Reyioua
* Lab Goals
1. Understand architecture of OAL IOCTL
library in the Common code
2. Understand how to add a new IOCTL to the
OAL based on the Common code

* \/ideo

Module 6 - The BSP 236

p
kThe Board Support Package
~

AN

e BSP Overview

e Platform Common Code

e BSP Components

e Lab 6.1 — Registry Initialization

e Creating a New BSP

e Lab 6.2 - Adding a New IOCTL to an OAL
* Review

Module 7 - Drivers 237

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

Device Driver
Concepts

Module 7 - Drivers

238

p
. Course Outline

.

7

e Module 1:
e Module 2:
e Module 3:
e Module 4:
e Module 5:
e Module 6:
» Module 7:
e Module 8:
e Module 9:
e Module 10:

e Course Introduction

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development
Testing & Verification

e Course Review

Module 7 - Drivers 239

Device Driver Concepts

An Overview of Device Drivers
» User Mode Driver Framework
Handling Caller Buffers
Loading a Stream Driver
Lab 7.1 — Integrating a Device Driver
» Debugging Device Drivers
Lab 7.2 — Debugging a Device Driver
Review

Module 7 - Drivers 240

A Py
X Device Driver Concepts)
a4 N

» An Overview of Device Drivers

™ USer M da Deluor Bramacisioe I

* Device Drivers are software components
that abstract the functionality of a

¢ Loading physical or virtual device

e Lab 7.1 ="Integrating a Device Driver

e Handlin

e Debugging Device Drivers
e Lab 7.2 — Debugging a Device Driver

e Review

\ ®

Many device driver concepts are documented on MSDN:
http://msdn2.microsoft.com/en-us/library/aa917820.aspx

Module 7 - Drivers 241

An Overview of Device Drivers

Drivers included in Windows Embedded CE
%_WINCEROOT%\Public\Common\OAK\Drivers
All %_TARGETPLATROOT%\Drivers folders

A device driver is software that abstracts physical or virtual devices from the operating system. This allows an
application developer to call Win32 APIs to perform an operation on the underlying device without needing to
understand the low level details of the device. A driver also allows similar devices to be exposed to applications
with a common interface, even though different devices might have slightly different implementations.

For example, an application developer can transmit data across a serial port with calls CreateFile() on COMx
(where x denotes the serial port number to be opened, for example COM1 for serial port 1), WriteFile() to
write some bytes of data to the serial port, and CloseHandle(). Other standard APIs exist to do other
operations on the port including configuring its characteristics. The same sequence of APIs works for any
device that is exposing itself as a serial port no matter what the underlying device actually is. It is even possible
that there is no physical hardware associated with the port.

Device drivers:

Module 7 - Drivers 242

An Overview of Device Drivers (continued)

Drivers are classified in a number of different ways

Layered (MDD/PDD) vs. Monolithic
How the driver is architected

Native vs. Stream
Who loads the driver

User vs. Kernel
Where the driver is loaded

Built In vs. Dynamic/Installable
When the driver is loaded

Driver Family
WAV/Miniport/Touch/Display/Serial etc

There are many different ways to categorize device drivers depending on the context. Drivers are
differentiated based on who loads them, where they are loaded, when they are loaded, how they are
architected, as well as the family of devices they control.

Module 7 - Drivers 243

An Overview of Device Drivers (continued)

Layered (MDD/PDD) vs. Monolithic

MDD/PDD or Layered Drivers
Model Device Driver + Platform Device Driver = Driver
Sample implementations provided by Microsoft
MDD implements functionality common to all similar devices
MDD implements defined architecture for specific drivers
MDD can often be used unmodified
MDD calls PDD functions for hardware specific functionality
PDD must be customized to match target hardware
Interface to PDD is sometimes called DDSI
Provides for code reuse, ease of implementation
Can be slightly less efficient due to layering

Microsoft provided layered drivers are often referred to as MDD/PDD drivers. This terminology refers to the
components that make up the driver. An MDD/PDD driver model is provided by Microsoft for a number of
sample or reference drivers included in Platform Builder. The MDD/PDD model is intended to ease the porting
effort required to implement a driver for new hardware.

The MDD/PDD architecture contains two layers. The MDD (Model Device Driver) is a library of routines that
implements functionality and features considered to be common to all drivers in a particular device class. The
MDD code often can be used unmodified as long as the feature set that it supports is sufficient to meet the end
user requirements.

The PDD (Platform Device Driver) layer implements that hardware specific requirements of a particular driver.
The PDD layer is called by the MDD layer.

Each family of drivers that is implemented using an MDD/PDD architecture has its own set of APIs that make up
the MDD/PDD for that driver family, for example there is a serial MDD/PDD model, an audio MDD/PDD model
etc. The upper level interface exposed by the MDDs (in the form of specific IOCTLs) is generally expected by
higher level OS components.

Module 7 - Drivers 244

An Overview of Device Drivers (continued)

Layered (MDD/PDD) vs. Monolithic

Monolithic Drivers
Does not leverage high level shared library of interface routines
Written to implement requirements as efficiently as possible

Can have increased or otherwise unique feature set (not
dependent on MDD implementation)

Less code reuse, more complex development

Can be more efficient due to streamlined functions

Monolithic drivers do not implement the layered MDD/PDD approach. Monolithic drivers are typically written
when an MDD/PDD driver model does not exist, when unique requirements can’t be handled by the existing
MDD implementation, and when performance needs become more important than ease of implementation.
Monolithic drivers are also written when the device hardware is capable of implementing many of the features
that are otherwise implemented in the MDD. This is another area where a monolithic driver can provide better
performance.

Regardless of whether you implement a monolithic driver or a layered driver, you can base your
implementation on the source code for any of the sample drivers.

Module 7 - Drivers 245

An Overview of Device Drivers (continued)

Layered (MDD/PDD) vs. Monolithic

Hybrid Drivers
MDDs are not immutable. Clone and modify as necessary
Modified MDDs are often used to implement missing feature
requirements
Maintains ease of development benefits by starting with existing
high level driver implementation

Need something a little different than the MDD/PDD sample driver offers? Consider cloning the MDD and
modifying it to suit unique requirements. This allows the developer to leverage the existing code and still
implement unique features of a particular device. Note that you must still expose the same minimum level of
functionality at the upper edge to maintain compatibility with OS components that utilize a particular driver
interface.

Module 7 - Drivers 246

|L An Overview of Device Drivers (continued)]
4 N\

» Native vs. Stream

» Native Drivers
Fixed set of native device classes defined by CE
Keyboard
Display
Touch
Drivers loaded directly by GWES, not managed by device
Each has its own model

Software

_ y,

Another way to differentiate drivers is by the way in which they are loaded and managed. There are two
general driver models in this categorization: Native and Stream drivers.

Native drivers are special purpose drivers that are not managed by the Device manager component and do not
have to export an API that is compatible with generic drivers. Rather, they are loaded directly by their host
component (gwes.dll). The term “native” refers to the interface between GWES and the hardware. Native
drivers have an interface that is unique to the hardware that they control; one native driver class will have a
completely different interface than another native driver class. This native interface provides for optimal
performance between the host server component (gwes) and the driver because the APl is designed directly for
the hardware. Notice that native drivers are all user interface related, a key responsibility of the GWE.

The native device driver model was especially important in previous versions of the operating system because
GWE and Device ran in separate user processes. The native driver loading model allowed GWE to have fast
access to the drivers without having to cross a process boundary.

This illustration demonstrates both layered and monolithic architecture models for native drivers. Notice that
GWES is the entity at the top of the slide, native drivers are loaded directly by GWES.

Module 7 - Drivers 247

[An Overview of Device Drivers (continued)

4)

» Native vs. Stream

» Stream Drivers
Loaded and managed by Device Manager
Support any type of physical or virtual device

Device Manager imposes minimum interface requirements (driver entry
points and behavior)

Stream model applies to most drivers
Exposed to applications through file system APIs
Can be loaded at boot or dynamically

.

Software

. y.

Stream drivers are loaded and managed by Device manager. The device manager requires each driver under its
control to implement a common interface defined by Device manager. Stream drivers can be written to control
any possible type of physical or virtual device, as long as it conforms to the stream driver interface required by
the device manager. This makes the device manager agnostic to the types of devices that it can support.
Stream drivers can be exposed as a special file system device. Stream drivers can be named and opened with a
CreateFile() call. The resulting handle can then be used to access the driver with regular file system APIs. The
file system recognizes the device name as belonging to the device manager, and forwards the access on to the
Device manager for proper handling.

Stream drivers have a flexible loading model. They can be loaded automatically at boot, or they can be load
dynamically, on demand.

This slide demonstrates layered and monolithic stream drivers. Notice they are loaded under Device Manager
—all drivers managed by Device manager are stream drivers and implement the required stream driver
interface.

Module 7 - Drivers

248

7

N\
An Overview of Device Drivers (continued)
L A
a4 N
» Stream Driver Architecture
Application
A
b 4
File System (\)
Device
Kernel — Manager (\
i \ h'lterrup}) Stream Interface Driver
-OAL
Sl:tts\r«r::::n Hardware Platform Device
/

Module 7 - Drivers

249

An Overview of Device Drivers (continued)

Stream Driver File Names
Drivers can be accessed as special file system device

Three different namespaces provide different features
Share common 3 letter prefix
Legacy
Example: “COM1:"”
Device
Example: “\Sdevice\COM1”
Bus
Example: “A\Sbus\PCMCIA_0_0_0"

Named interface not required

Stream drivers can have names, and be accessed through file system handles. There are three different ways
to access a particular named driver, providing different capabilities and access rights to the caller. The legacy
device name is the original mechanism and is still supported by CE. The \Sbus and \$device namespaces were
added to provide additional capability and eliminate some limitations of the legacy namespace. Any named

driver can be accessed using any of the three naming conventions, subject to some limitations.

Note that it is not necessary for all device drivers to have a named interface. A driver may provide a standalone
function that does not require it to export an interface to applications or other drivers, or it may provide some

other custom interface that does not utilize the file system interface.

Module 7 - Drivers 250

An Overview of Device Drivers (continued)

Stream Driver File Names

Legacy Namespace
Original naming convention
Used by most legacy drivers
Consists of Prefix followed by Index (0-9)
Limited to 10 instances of a particular prefix (COMO - COM9)
Prefix included in driver entry points

Unless special registry flag is set

The legacy naming convention is a 3 letter prefix with a numeric suffix varying from 0-9, for example “COM1”.
This is the most common way of accessing a driver. It provides a normal file handle to the device that can be
used for normal 10 operations. This namespace is limited to 10 devices with a single prefix. An implementation
that has more than 10 devices must either change the prefix or use the \$Sdevice namespace

Note that the Prefix (specified in the registry) must also be appended to the required stream driver entry points
unless a special registry flag is set.

Module 7 - Drivers 251

An Overview of Device Drivers (continued)

Stream Driver File Names

Device Namespace
Similar to Legacy namespace
Consists of Prefix followed by number
Provides support for more than 10 devices
“\Sdevice\COM27"

The device namespace is similar to the legacy namespace. Its primary advantage is its ability to support more
than 10 devices.

Module 7 - Drivers 252

An Overview of Device Drivers

Stream Driver File Names

Bus Namespace

Typically used with client drivers loaded by a bus driver

Provides mechanism to differentiate between 10 and bus control
operations

Provides mechanism for more sophisticated driver
loading/unloading/power management features

The \S$Bus namespace provides a mechanism for more sophisticated driver level control operations. This
mechanism is typically used in conjunction with bus/client drivers, where the bus driver performs various
operations on behalf of the client drivers. A handle returned using the \$Sbus namespace can have different

access permissions and capabilities than a normal handle. Microsoft provides bus drivers for the most
commonly used bus implementations.

Module 7 - Drivers 253

An Overview of Device Drivers (continued)

Stream Drivers - The 12 Entry Points

Performs all initialization global to all instances; memory mapping,
interrupt initialization, ...

Marks handle as invalid, if needed, to eliminate potential race
condition with multiple threads

The driver is initialized (loaded)
Called prior to XXX_Delnit

The driver is de-initialized (unloaded) Cleans up from JOO(_Init

Allocates handle for use by other 10 functions, allocates resources
for open context, & prepares for operation

Wakes sleeping threads, if needed, to eliminate potential race
condition with multiple threads

Application calls CreateFile
Called prior to XXX_Close

Application calls CloseHandle Cleans up from open context

Performs custom driver operations using IOCTL code specific to

Applicati lls DeviceloControl : e ;i
pplication calls Devicelotontro device; this is the workhorse of most drivers

Application calls ReadFile Performs read; often not used in favor of XXX_IOControl
Application calls WriteFile Performs write; often not used in favor of XXX_I0Control
Application calls SetFilePointer Performs seek; often not used in favor of XXX_IOControl
05 resumes from suspend state Performs operations necessary to exit low power mode
05 going to suspend state Performs operations necessary to go into low power mode

Note that XXX is replaced by the Prefix for the driver, e.g. COM. If the DEVFLAGS_NAKEDENTRIES flag is set in
the registry for this driver then the Prefix is eliminated (e.g. use Init instead of COM_lInit).

XXX_Init() and XXX_Deinit() are required for all stream drivers.

XXX_Open() and XXX_Close() are required for all stream drivers that support a named interface. If you provide
a prefix entry in the registry section that loads this driver then your driver supports a named interface and
requires these functions.

The XXX_PreClose and XXX_PreDeinit are optional functions provided to solve potential race conditions due to
threads blocked in a driver. These functions provide a mechanism to separately invalidate handles and wake
sleeping threads before XXX_Close and XXX_Deinit are called.

XXX_PowerDown and XXX_PowerUp are optional functions called by the Device manager when the operating
system is entering and exiting its low power Suspend state. The OS is running in a limited mode when these
functions execute and the types of operations and system API calls available to these functions are limited.
Drivers that implement these functions should be careful to limit their scope to the minimum necessary to
change the power state of the device. These functions constitute the legacy driver power management
infrastructure. The Power Manager component provides more sophisticated (and complex) power
management leveraging the I0Control interface.

The XXX_IOControl function is the primary interface used by most drivers. Applications and other drivers use
the file handle returned by CreateFile in a call to DeviceloControl along with a control code and driver specific
data structure to communicate with the driver. This interface provide great flexibility in performing driver
operations. Most drivers utilize this interface exclusively, and do not implement the Read/Write/Seek
functions. If they are not implemented, the corresponding Win32 call using the device handle will fail. At least
one of these functions or the I0Control function must be implemented for named devices.

Module 7 - Drivers 254

An Overview of Device Drivers (continued)

How do you implement a Stream Driver?
Select a device file name prefix
Implement the required entry points
Create the *.DEF file

Create the registry values necessary to load your driver

It’s very easy to implement a basic stream driver that can be accessed from an application. While there are a
number of infrastructure elements supported by the Device manager that could be implemented in a driver
such as power management, bus/client driver relationships etc, these advanced features are not required. The
only thing necessary to get the device manager to load a basic driver is to properly implement and expose the
required entry points. Then create the necessary registry keys that the Device manager needs to activate your
device and you have a functional driver.

Module 7 - Drivers

255

p
\LAn Overview of Device Drivers (continued)

P

» Kernel Mode vs. User Mode

User Mode

Kernel Mode

\L

AN

J

Drivers can run in either kernel mode or user mode. Kernel mode drivers run in the context of the kernel. User

mode drivers run in one or more user mode processes. Both user mode and kernel mode drivers are managed

by the Device manager (devmgr.dll).

Module 7 - Drivers 256

An Overview of Device Drivers (continued)

Kernel Mode Drivers
Default driver model
Run in kernel memory space

Link to kernel version of coredll, k.coredIl.dll
Automatic, no need to change build rules

Highest performance

Fast access to kernel APls

Direct access to user buffers
Must be robust

Driver crash could corrupt kernel

The Device manager loads all drivers into kernel space as kernel mode drivers unless the
DEVFLAGS_LOAD_AS_USERPROC flag is set in the registry. Kernel mode drivers provide the best performance
since they can call kernel APIs directly using the kernel version of coredll called k.coredll.dll. Kernel drivers can
synchronously access user buffers very quickly because user memory is directly available.

Kernel mode drivers must be robust because they have unlimited access to memory. A faultin a kernel mode
driver could corrupt kernel memory causing a system crash.

Module 7 - Drivers 257

An Overview of Device Drivers (continued)

User Mode Drivers
Also managed by Device manager
Hosted by udevice.exe
Close compatibility with kernel mode drivers

UM Drivers lose Kernel privileges
No access to kernel structures or memory
Cannot call certain kernel only APIs
Restricted access to other kernel APIs

Increases system stability

Examples
Expansion buses like USB and SDIO

Drivers are loaded into User mode when the DEVFLAGS_LOAD_AS_USERMODE flag is set in the registry. This
causes the driver to be loaded into a user mode driver host process called udevice.exe. This isolates the driver
from the rest of the system increasing overall stability at the expense of performance.

User mode drivers run in the context of a user mode process and are therefore restricted from calling kernel
only APIs (with some exceptions). In addition user mode drivers do not have access to kernel memory and
therefore have restrictions on the kinds of pointers and asynchronous memory accesses they can perform. As a
result drivers that must be able to run in either user mode or kernel mode must be written to comply with user

mode driver restrictions.

Module 7 - Drivers

258

7

3 Device Driver Concepts

7

e Handli

e An Overview of Device Drivers

» User Mode Driver Framework

g Callae D ffnere

e Loading
elab7.1
e Debugg
e Lab 7.2

e Review

* Improved stability
* User-Mode Drivers are isolated from other
drivers
* Kernel is isolated from user-mode drivers
* Increased security
* Kernel protected from compromised drivers
* Lower privileges restrain a compromised
driver
* Recoverability
* System can recover after a driver crash
* Driver can be restarted without rebooting

AN

Module 7 - Drivers 259

User Mode Driver Framework (continued)

User Mode Driver Loading

User Mode Driver Host (udevice.exe)

User Application f 1
User Mode Driver

™~ \ User Mode
' | Kernel Mode |

Device Manager >{ Reflector Service

Parent Bus Driver

The User Mode Driver Framework is divided into two physical components. The first component is the User
Mode Driver Reflector, which resides inside the device manager. The second component is the User Mode
Driver Host, which is a user mode application that is launched and managed by the User Mode Driver Reflector.

When a driver is flagged as a User Mode Driver in the registry, the device manager will access the User Mode
Driver Reflector. The User Mode Driver Reflector launches the appropriate User Mode Driver Host process and
forwards I/O requests to it. The User Mode Driver Host process in turn forwards 1/0 requests to the User Mode
Driver.

The process of using a User Mode Driver begins with a user application or with a parent bus driver. User
applications and parent bus drivers can load User Mode Drivers by calling ActivateDevice or ActivateDeviceEx.
User applications and parent bus drivers can unload User Mode Drivers by calling DeactivateDevice. Once
loaded, any user application or driver can access the User Mode Driver by using the device handle.

If the driver is a User Mode Driver, the call to ActivateDevice or to ActivateDeviceEx will result in the device
manager calling the User Mode Driver Reflector function as well. A driver is recognized as a User Mode Driver
when the FLAGS value is set to the setting DEVFLAGS_LOAD_AS_USERPROC (0x10) in the registry key of the
device.

The User Mode Driver Reflector, which is aware of the original process and the destination process, uses
CeFsloControl to forward the device manager's request to the User Mode Driver Host. The User Mode Driver
Host then parses the request to either load, unload, or call the parent bus driver's entry.

The User Mode Driver has restricted access rights to the hardware, which prevents it from being able to
accommodate requests such as mapping physical memory or calling interrupt functions. To accomplish these
types of requests, the User Mode Driver calls the User Mode Driver Reflector, and enables the User Mode
Driver Reflector to handle the request. The User Mode Driver Reflector then checks the user request against
the registry settings to determine whether it should perform the requested action. Unlike with interrupts and
the mapping of physical addresses, the User Mode Driver can, via the device handle and without the aid of the
User Mode Driver Reflector, access the parent bus driver regardless of where the parent bus driver is located.

Module 7: Device Driver Concepts

260

Loading a User Mode Driver

User Mode Driver Host Process

User Application XXX_Init(...) 8
| T ActivateDeviceEx User Mode Driver
HANDLE udevice.exe
1 10 Returned
User Mode I 1‘ |CreateProcef(,, lume Name)
it forwarded |’ | ;
Kernel Mod XXX_Init 4 9 Device
i 7
to UM Driver Host I:" ’b i * Bttt
: - 66— 2—> ;
Device Manager . . __ .°_ Reflector Service

T Im HANDLE
1 * Returned

Parent Bus Driver

1. User App calls ActivateDevice(Ex) to Load UM Driver

(App can Call DeactivateDevice to unload the loaded UM Driver.)

Device Manager checks Registry Keys to find out if the driver is to be loaded in UM
2. Device Manager then creates a Reflector Service Object

Reflector Service then launches the UM Driver Host process with the Volume Name passed as an argument.
The UM Driver Host creates and mounts the specified Volume and registers a set of File System Volume APlIs.

The call returns back to the reflector

The call returns back to the Device Manager

Device Manager then calls XXX_Init

Reflector forwards XXX_Init to the UM Host Process

UM Host Process parses request and loads the required driver and calls into XXX_Init entry of the loaded driver.

Loaded Driver returns back the Device Context to Device Manager

Device Manager creates a Handle associated with the returned Device Context and returns it to the User App.

Now the UM Driver is loaded and the User App can access it using normal Handle based APls; CreateFile,

WriteFile, ReadFile, DeviceloControl are all supported.

Module 7 - Drivers 261

User Mode Driver Framework (continued)

Reflector Service
Nucleus of User Mode Driver Framework
One Reflector Object for each UM Driver
Launches and manages UMD Host process

Forwards device request to UM Driver hosted by UM
Driver Host

Maps first level pointers from caller to UM Driver process
space

Serves User Mode Drivers on kernel-privilege actions

Makes UMDs act as KMDs from the User Application’s
perspective

The reflector service resides in the device manager and is the bridge between a calling application and the user
mode driver process. The reflector masks the difference between a user mode and kernel mode driver to other
user mode processes. A calling application or another driver does not know whether a particular driver is
running in kernel mode or user mode, thanks to the reflector service.

The reflector service also provides kernel support services to the user mode driver. The reflector (which runsin
the kernel) performs certain kernel mode only APIs on behalf of the user mode driver. This allows a user mode
driver to call certain kernel mode only APIs such as Interruptinitialize() and VirtualCopy() that would otherwise
be unavailable. The reflector validates these calls before making them, limiting their use to parameters that
are configured in the registry.

Module 7 - Drivers

262

[User Mode Driver Framework (continued)

.

7

« User Mode Driver Host process is launched and managed by registry settings

: HIVE BOOT SECTION -
¢ Set Device RootKey and registry enumerator
: BCESYSGEN IF CE_MODULES_DEVICE
[HEEY_LOCAL_MACHINE\Drivers)
"RootKey"="Driversi\BulltIn”
"PrOcName™="udevice. exe”
"ProcVolPrefix™="judevice"”

[HEEY_LOCAL_MACHINE\Drivers\ProcGroup 0002]
"ProcName™="servicesd.exe"”
fProcVolPrefix="{services”
FProcTimeout“=dvord: 20000

[HKEY_LOCAL_MACHINE\ Dr ivers) ProcGroup_0003)
"ProcName™="udevice . exe"™
"ProcVolPrefix"="judevice"”

PEVEY 1T A SHTMEY B s st Brad e Ted
m

: BCESYSGEN IF CE_MODULES_ETHMAN -
[HEEY_LOCAL_MACHINE\Drivers)Builtln\Ethman]
“Prefix™="ETH"
*Dll"™="echman.dll"
"Index"=dword:1
; WICSVC must be started before ethman
MOrder*=deord:24
: Flags==12 is DEVFLAGS_LOADLIBRARY and DEVFLAGS_LOAD_AS_USERFROC
“Flags*=dvord: 12
"UserProcGroup™=dword:3 : // default to group 3
: BCESYSGEN ENDIF

4 B b

\

v

This set of registry entries configures a driver to load into a specific user mode driver host process. Multiple
drivers can be loaded into the same user mode driver host by specifying the same UserProcGroup. If the

UserProcGroup is not specified, the user mode driver will load into its own independent process.

Module 7 - Drivers

263

User Mode Driver Framework (continued)

BIB File Issues

Driver in MODULES section of BIB file must be fixed up
properly to run in either User or Kernel mode

Use K flag to fix up to kernel space

Remove K flag to fix up to user space

Driver in FILES section can be loaded into user or kernel
space

Drivers must be properly fixed up to run in the correct memory location just like other dlls. Drivers that are
listed in the MODULES section will be fixed up in the image itself and must be properly specified in the bib file.
If the K flag is present the driver will be fixed up to run in kernel space. If it is absent the driver will be fixed up
to runin user space. The Q flag that allows dlls to be fixed up to both user and kernel space is irrelevant for
drivers.

Drivers can be included in the image via the FILES section of the BIB file. Drivers added in this fashion will be
fixed up by the loader at run time, can therefore be loaded into either kernel or user space.

Module 7 - Drivers 264

User Mode Driver Framework (continued)

Restrictions

Do not use embedded pointers
Reflector maps pointer parameters, but not embedded pointers

Access from kernel could result in embedded kernel pointer that
can’t be dereferenced

Keep all data in a single flat buffer passed with pointer
parameter

No helper APIs yet

Do not support asynchronous memory access
Pointer parameters are not properly marshaled after call returns

User mode drivers should not use embedded pointers. The user mode driver reflector will perform the
marshalling necessary for pointer parameters in function calls to be dereferenced. The reflector is not able to
marshal pointers embedded in a data structure so the user mode driver must do the marshalling. If the driver
is called by a kernel mode component the embedded pointer would point to a kernel address which the user
mode driver can’t access. The portable solution to this problem is to ensure that all data is passed into the
driver in a single flat structure that does not contain pointers.

User mode drivers should not be designed to implement asynchronous memory accesses to client buffers. The
reflector in the kernel will marshal the pointer parameter during the synchronous call but the buffer can’t be
marshaled for asynchronous access. User mode drivers can marshal embedded pointers for asynchronous use
themselves, but only if they point to user address space (see above for embedded pointers to kernel space).

Module 7 - Drivers

265

User Mode Driver Framework (continued)

Restrictions

Careful use of Kernel APIs
Some APIs completely unavailable
Some APIs supported by reflector, but restricted by registry

configuration

Some drivers must run in kernel mode
Display
Networking

User mode drivers generally can’t access kernel mode only APIs. There are exceptions for APIs that are
required for all device drivers, and these APIs are supported by the reflector in the User Mode driver
framework. Drivers that must run in user mode need to ensure they don’t call off limits APIs, and ensure the
proper registry entries are in place to allow the reflector to validate other calls.

There are some drivers that must run in kernel mode. These include display and networking drivers, among
others. These components have frameworks that can’t be used with the user mode driver restrictions. This
restriction limits the number of drivers that can be run in user mode.

Module 7 - Drivers 266

User Mode Driver Framework (continued)

Kernel Mode Driver Restrictions

Can not display user interface directly
Requires support of Ul proxy device driver
Use CeCallUserProc as interface
Ul proxy device driver is loaded on first call

http://msdn2.microsoft.com/en-us/library/aa915093.aspx
The following list shows the process for displaying a Ul from a kernel-mode device driver:

1. A user-mode application makes a call into a kernel-mode driver.
2. While the kernel-mode driver is running, the kernel-mode driver requires input from the user.
3. The kernel-mode driver calls CeCallUserProc to load the Ul proxy device driver.
4. The kernel-mode function translates the call into an 1/O control code call and forwards the call to the Ul
proxy device driver, which is hosted in udevice.exe.
5. The Ul proxy device driver does the following:
Loads the Ul proxy device driver that was passed to the CeCallUserProc function.
Calls the entry point for the Ul proxy device driver.
Passes the Ul proxy device driver data to the entry point.
Returns the Ul proxy device driver data back to the caller.
6. The Ul proxy device driver data is then marshaled back to the kernel, and the call returns to the kernel-mode
device driver.

Module 7 - Drivers 267

A Py
X Device Driver Concepts)
a4 N

e An Overview of Device Drivers
e User Mode Driver Framework
» Handling Caller Buffers

L] Loading = Ctroam Drivar

* Pointer Parameter |
Lab 7.1 = .
’ * Embedded Pointer
* Access Checking

o Lab 7.2 - « Marshalling ver

s Review |* Secure Copy

e Debuggir

Module 7 - Drivers 268

Handling Caller Buffers (continued)

Terminology
struct MyStruct {
Pointer Parameter BYTE *pEmbedded;
X DWORD dwSize;
Pointer passed to an APl as a Ji
parameter
“« " . DeviceloControl (hFile,
pMyStruct” is a pointer parameter pMyStruct,
Embedded Pointer sizeof{MyStruct))

Pointer passed to APl within a data structure or buffer
“pEmbedded” is an embedded pointer

Access Checking
Verify that caller process has privilege to access buffer
Marshalling

Prepare pointer that a driver uses to access caller’s buffer

Secure Copy
Copy buffer to prevent asynchronous modification

These terms are discussed in more detail on MSDN:
http://msdn2.microsoft.com/en-us/library/aa931071.aspx

The Windows Embedded CE driver model has changed for Windows Embedded CE 6.0. In Windows CE 5.0 and
earlier, drivers ran in the Device.exe process. In Windows Embedded CE 6.0, drivers run in the NK.exe process.
Due to the updated driver model, Windows CE 5.0 and earlier compatible drivers should be modified in order
to work properly with Windows Embedded CE 6.0. Stability and security are also extremely important for
drivers, as an instable driver in Windows Embedded CE 6.0 can potentially cause the OS to fail.

In Windows Embedded CE 6.0, the kernel process receives the top 2 GB of virtual memory space, while the
remaining 2 GB is allocated for all other processes. The virtual memory for each process is not available at all
times. Instead, only the kernel process along with any current processes are accessible.

Module 7 - Drivers 269

Handling Caller Buffers (continued)

Access Checking
Parameter pointers automatically access checked

Embedded pointers need to be access checked using
CeOpencCallerBuffer

After use CeCloseCallerBuffer needs to be called to free
resources and write back to buffer if duplication was used

This API also provides marshalling

This API can be forced to duplicate buffer using ForceDuplicate
flag

Windows CE 5.0 and earlier, MapCallerPtr was used to validate a region of memory pointed to by a pointer
parameter. MapCallerPtr was used in the I/O controls (IOCTLs) for a driver to validate a pointer parameter
passed by a calling process. Device drivers in Windows CE 5.0 ran with a relatively high privilege, and had
adequate access to memory. MapCallerPtr was used to verify both pointer parameters as well as embedded
pointers.

In Windows CE 5.0 and earlier, MapPtrToProcess was used by a device driver to gain access to the data in the
address space of an application.

In Windows Embedded CE 6.0, the kernel performs a full access check on buffer pointer parameters. This takes
the responsibility for pointer parameter validation away from a device driver. However, a driver still must verify
that the caller has access to memory addressed by embedded pointers.

It is possible for a malicious application to pass an embedded pointer to a kernel address space and have a
driver read or write to the buffer, potentially modifying the kernel. A driver must use the CeOpenCallerBuffer
and CeCloseCallerBuffer functions to verify that the caller has access to the memory that is pointed to by
embedded pointers.

CeOpenCallerBuffer can be called with the ForceDuplicate parameter set to TRUE. This allocates a temporary
heap buffer in the current process. If you choose to copy an input buffer for security purposes, and use
CeOpenCallerBuffer for access checking, you can set ForceDuplicate to TRUE. This allows you to perform both
the input buffer copy and the access check with one function call.

*/

Module 7 - Drivers 270

Handling Caller Buffers (continued)

Marshalling Methods

Direct
Caller buffer directly accessible, no action necessary
Applies only to kernel mode driver called synchronously

Copy

Copy caller input buffer to driver working buffer
Operate on driver working buffer

Copy back to caller
Alias

Create new buffer in driver mapped directly to caller buffer
Accesses to driver buffer are reflected in caller buffer

Kernel can determine most efficient marshalling method

In Windows CE 5.0 and earlier, the MapCallerPtrfunction also performed marshalling for pointers. A driver
called MapCallerPtr on parameters as well as embedded pointers both for validation and marshalling.

In Windows Embedded CE 6.0, marshalling is dependent on if a pointer is used synchronously or
asynchronously. If a pointer parameter or embedded pointer is used synchronously, the address space of the
calling process is accessible for the duration of a call into the driver. This eliminates any requirements for
marshalling. The pointer of the calling process can be used unchanged by the driver, which can then access the
memory of the caller directly. This method of marshalling is referred to as direct access.

However, if a pointer is used asynchronously, it is critical that the caller buffer is accessible when the caller's
address space is unavailable. This means that direct access is not possible for any kind of asynchronous work
after the call has returned. Windows Embedded CE 6.0 includes the CeAllocAsynchronousBuffer and
CeFreeAsynchronousBuffer functions for drivers to marshal pointer parameters and embedded pointers when
asynchronous access is required. For example, when a thread such as the IST requires access to the buffer of
the caller, the marshalling helper functions can choose between the duplication and aliasing marshalling
mechanisms. This is dependant on the size of the buffer involved. If the buffer is small enough, the kernel
duplicates the buffer. However, this can affect performance, and if the buffer is too large to duplicate, the
kernel will alias the buffer instead.

Module 7 - Drivers 271

Handling Caller Buffers (continued)

Synchronous access
Defined as access on SAME THREAD synchronously
Kernel automatically handles pointer parameters

Use CeOpenCallerBuffer to access check and marshal embedded
pointers

Asynchronous access

Defined as any asynchronous access or any access on another
thread

Initial handling same as synchronous access

Use CeAllocAsynchronousBuffer to marshal pointer for
asynchronous use

Module 7 - Drivers 272

Handling Caller Buffers (continued)

Handling Caller Buffers

Secure Copy
Copy input parameter buffer to driver local buffer
Validate and use local input parameters

Prevents caller from maliciously or inadvertently modifying input
parameters

Performance impact

Secure Copy Methods
Manual copy
CeOpenCallerBuffer
Use with embedded pointers
ForceDuplicate flag
CeAllocDuplicateBuffer
Use with pointers

Performing a secure copy of input parameters is one of the best practices for developing a device driver for
Windows Embedded CE. It is not necessarily safe for a driver to access the buffer of a caller. It is possible that
the caller may be malicious, or even written poorly. The solution to these data integrity problems is to perform
a secure copy. If a driver must access the buffer of a caller asynchronously, it must call the
CeAllocAsynchronousBuffer and CeFreeAsynchronousBuffer functions. This eliminates the need to perform an
additional parameter copy. If a driver is accessing parameters synchronously, you should use the
CeAllocDuplicateBuffer and CeFreeDuplicateBuffer secure copy helper functions to copy the buffer of the
caller.

If you are handling embedded pointers and calling the CeOpenCallerBuffer function for access checking, set the
ForceDuplicate parameter to TRUE to obtain a local copy of the buffer of the caller. This allows you to avoid an
additional function call to CeAllocDuplicateBuffer. The local buffer is then freed upon calling
CeCloseCallerBuffer.

Module 7 - Drivers

273

Handling Caller Buffers (continued)

APIs

CeOpenCallerBuffer
Use on embedded pointers
Returns checked, marshaled pointer
Can force buffer duplication (Secure Copy)

CeCloseCallerBuffer
Frees resources allocated by CeOpenCallerBuffer
Write back to caller buffer if necessary

Module 7 - Drivers

274

Handling Caller Buffers (continued)

APIs

CeAllocAsynchronousBuffer
Allocate driver buffer for asynchronous use
Source buffer must be marshaled
Must be called synchronously

CeFreeAsynchronousBuffer
Frees resources allocated by CeAllocAsynchronousBuffer
Write back to caller buffer if necessary

Module 7 - Drivers

275

Handling Caller Buffers (continued)

APIs

CeAllocDuplicateBuffer
Secure copy input buffer
Use with pointers only
Use with synchronous access only

CeFreeDuplicateBuffer
Frees resources allocated by CeAllocDuplicateBuffer
Write back to caller buffer if necessary

Module 7 - Drivers

276

p
5 Handling Caller Buffers (continued)

/_
« APIs Review

CeOpenCallerBuffer

CeCloseCallerBuffer

CeAllocAsynchronousBuffer

CeFlushAsynchronousBuffer

CeFreeAsynchronousBuffer
CeAllocDuplicateBuffer

CeFreeDuplicateBuffer

poion o

Checks access and marshals a buffer pointer from the source process so that it
can be accessed by the current process.

Frees any resources that were allocated by CeOpenCallerBuffer.

Re-marshals a buffer that was already marshaled by CeOpenCallerBuffer so that
the server can use it asynchronously after the API call has returned.

Flushes any changed data between the source and the destination buffer
allocated by CeAllocAsynchronousBuffer.

Frees any resources that were allocated by CeAllocAsynchronousBuffer,
Abstracts the work required to make secure copies of APl parameters.

Frees a duplicate buffer that was allocated by CeAllocDuplicateBuffer.

AN

Module 7 - Drivers 277

Device Driver Concepts

Loading a Stream Driver

* Driver loading controlled by registry keys
* When the driver loads
* How the driver loads
* Parameters passed to the driver
* Drivers loaded with call to ActivateDeviceEx
* Takes handle to registry key as parameter
* Different loading requirements supported
* Can be loaded automatically at boot (Built In)
* Can be loaded dynamically (Plug and Play)

Stream drivers are loaded via a call to ActivateDeviceEx(). This function takes a handle to a registry key as a
parameter. The registry key contains all the information necessary to configure and load the driver.

CE 6.0 supports both automatic driver loading at boot and dynamic driver loading on demand. This provides
support for Plug and Play buses, and allows drivers to be unloaded as needed.

Module 7 - Drivers 278

Loading a Stream Driver (continued)

Driver Registry Settings
DIl [Required]
Specifies the name of the driver DLL
Prefix [Optional]
Specifies the file name for the device driver
Order [Optional]

Specifies order to load driver

Index [Optional]
Specifies the device index (x in COMx:)
IClass [Optional]
Specifies GUID(s) for device class(es) for use by PnP notification
system
Flags [Optional]
Specifies load flags for the driver

There are many different registry settings that control how a driver loads. Most are optional. Some registry
settings are used by the Device manager and can be optionally used by all drivers. Custom registry entries can
also be added that are referenced directly by the driver itself after it loads.

DLL is a string value that specifies the dll name to load. This value is required.

Prefix is a three character string that is makes up the name of the driver. This value must be present in order to
have a file handle based interface to the driver. The Prefix value is the same value that must be used in the
stream driver entry points unless the DEVFLAGS_NAKEDENTRIES flag is set.

Order is a dword value that provides a mechanism supporting load order dependencies. Drivers will be loaded
in the order specified by the Order key. If this key does not exist the driver will be loaded at the end. Order
should not be used unless there is a load order dependency to resolve.

Index is a dword value that makes up the numeric portion of the device name. This value is optional; the
Device manager will pick the next sequential value if it does not exist.

IClass provides a mechanism to advertise capabilities to various system components.

Flags provides a mechanism to control the way the driver is loaded.

Module 7 - Drivers 279

[Loading a Stream Driver (continued)
//

A,

» Driver Registry Settings - Flag Parameter

N S R

DEVFLAGS_UNLOAD 0x00000001 Driver unloads after a call to the XXX_Init entry point
DEVFLAGS_NOLOAD 0x00000004 Driver is not loaded

DEVFLAGS_NAKEDENTRIES 0x00000008 Driver entry points do not have an XXX Prefix
DEVFLAGS_BOOTPHASE_1 0x00001000 Driver is loaded during system phase one.
DEVFLAGS._ IRQ_EXCLUSIVE 0x00000100 Bus Driver loads the driver only when it has exclusive

access to the IRQ

DEVFLAGS_LOAD_AS_USERPROC 0x00000010 Loads a driver into user mode

\ 7

There are a number of loading options supported by the Device manager in the ActivateDeviceEx() call. These
options are governed by the Flags value in the driver loading key. The default option if no Flag parameter exists
is none. Some of the more common flags include:

DEVFLAGS_BOOTPHASE_1

This flag indicates that the driver should be loaded during the first boot phase only in hive registry systems that
have multiple boot phases. This flag is used in drivers that exist in the both the boot hive and the system hive,
and prevent the driver from being loaded twice.

DEVFLAGS_NAKEDENTRIES

This flag indicates that the driver does not implement the three letter prefix in its stream driver exports. This
allows the same driver to be used with different named prefixes, no need to recompile the driver.
DEVFLAGS_LOAD_AS_USERPROC

This flag causes Device manager to load the driver into user space. The default is to load all drivers as kernel
mode dlIs unless this flag is set. This is new functionality in CE6.

Module 7 - Drivers 280

Loading a Stream Driver (continued)

Driver Registry Settings — Bus Information

InterfaceType
Specifies the Interface (Bus) type used for a device

See INTERFACE_TYPE enumeration in CEDDK.H for a
complete list of interface types defined by Microsoft. (You
can define new ones if you need to)

BusNumber

Bus Instance number

Uniguely identifies the specific bus in case there is more
than one of the specified type in the system

InterfaceType and BusNumber are not used by Device manager in the ActivateDeviceEx call. Rather they are
used by the driver itself to determine how the corresponding device interfaces in the system.

Module 7 - Drivers 281

Loading a Stream Driver (continued)

Driver Registry Settings — Memory and 1/O Windows

Memory and I/0 Window information may be populated by a Plug
and Play Bus Driver or configured by the system OEM

loBase
Specifies the bus relative base of an I/0 mapped window used by the
device.
Multiple windows specified using a binary array of 32bit values, one for
each window needed
loLen
Specifies the length of each I/O window needed by the device
MemBase
Specifies the bus relative base of a memory mapped window used by the
device.
Multiple windows specified using a binary array of 32bit values, one for
each window needed
MemLen

Specifies the length of each memory mapped window needed by the device

These parameters indicate the memory and 10 requirements of a particular device. The values are relative to
the bus where the device resides. These values may be configured by the OEM for built in devices, or they
might be populated by a bus driver in a Plug and Play bus such as PCI.

The driver can easily retrieve this information along with bus information from the registry using the
DDKReg_GetWindowInfo() helper function. These bus relative addresses can then be mapped into virtual
addresses usable by the driver with the BusTransBusAddrToVirtual() helper function.

Module 7 - Drivers 282

Loading a Stream Driver (continued)

Driver Registry Settings — Interrupts

IRQ
Specifies the physical IRQ used by the device

SYSINTR

Specifies a Logical interrupt Identifier

Typically allocated by a bus driver for shared IRQs, the
Device driver reads this value and if present uses the one
provided by the bus driver. Otherwise the driver should use
the IRQ to request a new logical ID.

IsrDlI
Specifies a DLL to containing an installable interrupt handler

IsrHandler
Specifies the ISR handler in the ISR DLL

These optional registry entries provide interrupt related configuration data for a particular driver. Typically a
driver would use the Sysintr value directly if it exists in the registry. Otherwise it will request a new sysintr
using the Irq value, if the Irq value exists. Drivers that use installable interrupt handlers use the IsrDIl and
IsrHandler entries to specify the installable interrupt handler.

These values can easily be retrieved by the driver using the DDKReg_Getlsrinfo() helper function.

These registry entries are not required, but they are a good practice that allows the driver to be more portable.

Module 7 - Drivers 283

Loading a Stream Driver (continued)

Bus Drivers

What is a Bus Driver?

Load drivers for the devices on their respective buses

Provides Device Manager with enough information to create
bus-relative names and enable device handles

Provides bus level services for the bus

Examples are:
USB
PCI (PCIBus.dll)
PCMCIA (Pcmcia.dll)
Bus Enumerator (BusEnum.dll)

A bus driver is any software that loads drivers. Bus drivers have one or more of these responsibilities:
Managing physical busses, such as PC Card, USB, or PCI.

Loading drivers on a physical bus that the bus driver does not directly manage. An example is the Bus
Enumerator, which is a bus driver that loads built-in drivers and PCl bus drivers.

Calling ActivateDeviceEx directly to load a device driver. The loaded device driver might manage hardware
indirectly through another device driver.

Module 7 - Drivers

284

Loading a Stream Driver (continued)

BusEnum.dll

Used by Device Manager to load drivers
Starts top level driver loading process
“Bus” consists of registry subkeys
Loads drivers listed in subkeys
Loads other bus drivers and unmanaged drivers

The bus enumerator is a bus driver loaded with a call to ActivateDeviceEx(). The bus enumerator calls
ActivateDeviceEx() for each registry subkey directly below the key that activated the bus driver, and does not
traverse deeper into the registry. The bus enumerator is the initial driver loaded directly by Device manager,
and eventually causes all other drivers to be loaded.

Module 7 - Drivers 285

Loading a Stream Driver (continued)

Device Manager Process for Loading Drivers at Boot

reginitini Start Page - X
—

| HIVE BOOT SECTION 2

: Set Device RootKey and registry enumerator

: BCESYSGEN IF CE_MODULES DEVICE

[HEKEY_LOCAL_MACHINE\Drivers)
"RootKey"="Drivers\\Builcln"
"ProcName"="udevice.exe"
"ProcVolPrefix"="fudevice”

[HEEY_LOCAL_MACHINE\Drivers\ProcGroup_0002]
"ProcName"="servicead.exe"
*ProcVolPrefix"="{services™
"ProcTimeout"=dword: 20000

[HEEY_LOCAL_MACHINE\ Drivers\ProcGroup_0003]
"ProcName"="udevice . exa"
"ProcVolPrefix"="§udevice”

[HEEY_LOCAL_MACHINE\Drivers\BuiltIn]
"DLll"="BusEnum.dl1l"
"BusNempe"="BuiltIn"
"Flags"=dword:&
"Busloctl"=dword:2a0048
"InterfaceType"=dvord:0
"IClass"=multi_sz:"({BICCEEBA-5507-4196-8E41-2BF4:
: BCESYSGEN ENDIF
¢ END HIVE BOOT SECTION

The driver loading process starts with the Device manager reading the registry key at HKLM\Drivers to obtain
the root path for driver loading. It then calls ActivateDeviceEx() on that key. The driver located at that key is
typically the Bus Enumerator driver. Its responsibility is to serve as a bus driver for subkeys directly below it. In
the typical example shown above this means that everything directly under the HKLM\Drivers\BuiltIn key will
be automatically loaded at boot by BusEnum.dll. These drivers are typically referred to as “Built in” drivers.
Built in drivers often include other bus drivers such as PCl, USB etc that each manage their own buses

Module 7 - Drivers 286

Loading a Stream Driver (continued)

Sample Registry Entry

platform.req Start Page - X
4 HKEY_CLASSES_ROOT || Hame Type Dida
- j :EE:{EE&ET&'{&EE = || &) (Defaun) REG_S2 (vahie not st)
503 Conm o REG_SZ backight di
3 ContioPanel 5] IClass REG_SZ (A3234267-520C-456b BOEE-S24 7024996 35)
i Diivers) Index REG_DWORD (500000001 (1)
[BlockDevice &) Order REG_DWORD 000000001 1]
= iy Buitin 3] Prefor REG_SZ BEL
d AmdMoFMD
3 Audio
{3 Backhght
3 DMad
(1 DMaS

1 NMAR
B RegEdit | ™ Source

Here is an example of a “built in” driver. This driver will be automatically loaded at boot by the Bus Enumerator
driver.

Note that the registry configuration for many drivers will not be as simple as this example. Drivers will often
have other required configuration parameters especially if they reside on a bus. Therefore it is important to
check the documentation for the driver to determine the required configuration parameters.

Module 7 - Drivers 287

A Py
X Device Driver Concepts)
a4 N

e An Overview of Device Drivers

e User Mode Driver Framework

e Handling Caller Buffers

e Loading a Stream Driver

» Lab 7.1 - Integrating a Device Driver

| -

e De —
* Lab Goals

* Lal 1. Be able to integrate new drivers into an
e Re\ existing BSP
2. Be able to use Run-Time Image Viewer to
verify the contents of an OS run-time image
* Video

Module 7 - Drivers 288

Device Driver Concepts

* Implement KITL
* Essential for driver development
| * Do a Debug Build
» Disables optimizations
* Enables DEBUGMSG macro
| » Use the Kernel Debugger
! * Can be included in Debug or Release build
: * Kernel debugger is a component
Debugging D€ « Use Capabilities
! * Breakpoints, call stack, watch variables

There are several basic debugging techniques that can assist in debugging device drivers. The most important
step is to ensure that KITL is available on your device. The KITL transport is required in order to use the kernel
debugger and target control utility, and it can be used as the communications transport for all the other
remote tools.

Do a debug build of the operating system. A debug build does two things: disables compiler optimizations, and
sets the DEBUG define. Compiler optimizations make the kernel debugger less useful because the source code
no longer matches the compiled output. This makes breakpoints behave erratically, many variables can’t be
resolved etc. Nothing wrong with the debugger, the compiler has just optimized the code into a form that is
different from what appears in source. The DEBUG define is used by a number of debugging macros, namely
DEBUGMSG. A debug build will produce many more messages because the DEBUGMSG macro is utilized.

Use the kernel debugger to set breakpoints, view the call stack, watch local variables etc. Note that the kernel
debugger is a component that can be included in the image (IMGNODEBUGGER not set). A debug build does
not necessarily include the kernel debugger (although it does by default).

Use the DEBUGMSG macro in your driver to output appropriate diagnostic messages. Use the debug zones
capability to filter the output. Understand that debug messages take time, and can impact the functionality of
a bandwidth sensitive driver (USB, audio).

Module 7 - Drivers

289

Debugging Device Drivers (continued)

Use DEBUGMSG
Implement appropriate debug zones
Understand build requirements

Use targeted builds
Driver change only requires driver to be compiled
Make Runtime Image if driver in image (makeimg)

No need to Sysgen after each change
Load driver from Release Directory

Improves turn around time
Target->Release Directory Modules

Skip lengthy Makeimg step

There are a number of techniques you can use to reduce the turn around time in the debug cycle. Use targeted

builds effectively; there is no need to rebuild the entire BSP because you made a change to driver source code
in the BSP. Even worse, there is no need to rerun the sysgen cycle on the OS Design. If you are modifying code
in the Public tree, you would need to build and sysgen the Public tree — but you should never modify code in
the Public tree. A new operating system image can be made with the driver change by rebuilding the driver,

ensuring it is in the flat release directory, and making the run time image again.

A further improvement can be made by loading the driver directly from the flat release directory instead of the
operating system image. This eliminates the need to rebuild the operating system image (make run time
image) after a driver change. This can be accomplished by adding the driver to the list of modules in the

Target->Release Directory Modules dialog box.

Module 7 - Drivers 290

Debugging Device Drivers (continued)

Combine Release builds with kernel debugger

Use debug version of driver
Build in debug window
Copy to Release FRD

Use Release build of operating system
Include KITL, kernel debugger components
More realistic performance

Much smaller image

Another technique that can be used when debugging drivers is to use a debug version of the driver with a
Release build of the operating system. This results in a much smaller operating system image with
performance characteristics that are more representative of the real world. The operating system boots much
faster, resulting in better turn around times. The driver has been built with the debug settings, meaning
optimizations are turned off for better a better debugger experience and debug messages are enabled.

This method requires both debug and Release builds to be performed. Copy the driver binary and supporting
files (.pdb, .map. etc) to the flat release directory replacing the Release version. The driver can be built directly
into the image, or loaded from the flat release directory.

Module 7 - Drivers 291

Debugging Device Drivers (continued)

Debugger Issues

If you cannot set breakpoints
Ensure that .dll, .pdb, and .map files are in Flat Release Directory
DLL name in image must match name in Flat Release Directory
Module sometimes renamed in bib file (rare)

Run-time image must be in “break” state to instantiate
breakpoint

Underlying memory is ROM (XIP from ROM)

Can’t set breakpoints in ROM unless OEMIsRom
implemented

Load module from flat release directory instead

Module 7 - Drivers 292

Debugging Device Drivers (continued)

Debugger Issues

Compiler optimizations in Release build affect debugger
Changes underlying code sequence
Single stepping does not follow source code as expected
Eliminates many local variables
Variables are not resolved because they do not exist

Use debug version of module with kernel debugger

Switch to disassembly view if necessary

Release builds are difficult to debug effectively with the kernel debugger. The debugger operates on the actual
code output from the compiler, not the original source code. The compiler optimizations that are presentin a
release build cause the compiled output to differ significantly from the original source code. For example, the
underlying code sequence is rearranged for better performance, and local variables are often optimized away.
This is not apparent when viewing the source code in the IDE and causes confusion when using the debugger.
The debugger is unable to resolve many local variables (because they don’t actually exist), appears to step
through source code erratically and breaks at unexpected times (because the compiler output doesn’t match
what is visible in the source code window).

This can be resolved by using a debug build for the module being debugged. Compiler optimizations are
disabled in a debug build, so the assembled output matches the high level language source code. Another
technique is to switch to the disassembly view, which is what the debugger is actually using. This is much more
difficult to use, but is sometimes necessary to see what is really going on.

Module 7 - Drivers

293

Debugging Device Drivers (continued)

Debug Message Service
Provide debug information without halting the system

Debug message output controlled by zones
Debug zones
16 debug zones per module
. Debug zones can be controlled at run time

Uses KITL transport
Messages appear in Platform Builder debug window
Messages will appear on debug serial port if KITL not available

Module 7 - Drivers

294

Debugging Device Drivers (continued)

Debug Message Service

Use predefined macros
DEBUGMSG
Message exists in debug builds only
RETAILMSG
Message exists in debug and release builds
Message does not exist in ship builds

Module 7 - Drivers

295

7

X Debugging Device Drivers (continued)

7~

» Debug Message Service - Defining Debug Zones
iadmupp;ﬂ_] - X

Fdefine ZONE_ERROR
Hdefine ZONE_FUNCTION
Hdefine ZONE_STATUS
fdefine ZONE_ERASE
#define ZONE WRITE
Bdefine ZONE_READ

(Unkntwn Scope) - -
| —
/f test debug senes &
fdefine ZONEID_ERROR 10
#define ZONEID FUNCTION 11 E
fdefine ZONEID STATUS 12
Bdefine IONEID_ERASE iy
#define IOHEID WRITE 14
Fderine IONELID_READ 15

DEBUGZONE (ZONEID ERROR)
DEBUGZONE (ZONEID_FUNCTION)
DEBUGZONE (ZONEID STATUS)
DEBUGZONE (ZONEID_ERASE)
DEBUGZOME (ZONEID_WRITE)
DEBUGZONE (ZONEID_READ)

Bdefine IOHEMASE_ERROR {1 << ZONEID_ERROR)
Hdefine IONEMASE_FUNCTION (1 << ZONEID_FUNCTION)
#define TONEMASK STATUS {1 << ZOMNETD_STATOS)
Bdefine ZONEMASK _ERASE (1 << ZONEID_ERASE)
Hdefine IONEMASE_VRITE (1 << ZONEID_WRITE)
#define IONEMASE_READ (1 << ZONEID_READ)
DBGFARAN dpCurSectings = { TEXT("FHDTEST®), (

TEXT("0"), TEXT("1"), TEXT("Z%), TEXT("3"), TEXT("4").,
TEXT("5"), TEXRT(™6"), TEXT("7"), TEET("87), TEAT("3"),
TEXT("Ercor®), TEXT("Function*), TEXT("Status”),
TEXT("Erase”), TEXT("Vrite™), TEXT("Read”),

be

ZONEMASE ERROR | ZONEMASE FUNCTION

\

Module 7 - Drivers 296

Debugging Device Drivers (continued)

Debug Message Service

Controlling Debug Zones
Default set in DBGPARAM structure

Override default in image

[HKLM\DebugZones]

Override default on development PC
[HKCU\Pegasus\Zones]

Control from IDE at run time
Target | CE Debug Zones ...
Target Control Utility

297

Module 7 - Drivers
~

/\

[Debugging Device Drivers (continued)

7
» Debug Message Service - Register with debug subsystem

‘WeeStreambt.cpp | Start Page | - X
{Unknown Scope) - v
BOOL APIENTRY D1lMain{ HANDLE hModule, =3
DWORD ul reason for call, =
LPVOID lpReserved
3)
{
switch (ul_reason_for_call)
{
case DLL PROCESS ATTACH:
DisableThreadLibraryCalls { (HIODULE) hModule):
InitializeCriticalSection (&g _C3):
DEBUGREGISTER((HMODULE) hModule) ;
break:;
case DLL_PROCESS_DETACH:
DeleteCriticalSection (&g_C5);
break: E
H
return TRUE:
} -
4 m »

\.

DEBUGREGISTER allows debug zones to be controlled dynamically.

Module 7 - Drivers

298

7

5 Debugging Device Drivers (continued)

-

DEBUGREGISTER,
RETAILREGISTERZONES (hMod)

DEBUGZONE (n)
DEBUGMSG (cond, printf_exp)
RETAILMSG (cond,printf_exp)

ERRORMSEG (cond,printf_exp)

DEBUGCHK (exp)

ASSERT (exp)
ASSERTMSG (msg, cond)

DEBUGLED (cond, parms)

RETAILLED (cond, parms)

. A —

Calls RegisterDbelones to register zones for the current module (a DLL or process).

This macro only registers zones on Debug builds; it does nothing on Retail and ship builds.
This macro assumes that a global variable dpCurSettings has already been defined, where
dpCurSettings must be a DEGPARAM structure.

Associates a mask bit with a zone.

Conditionally outputs a formatted debugging message to [\KDbgPrintfW, This macro is only
present in Debug builds; it does nothing on Retail and ship builds.

Conditionally outputs a formatted debugging message to NEDbgPrintf\W, This macro is only
present in Debug and Retail builds; it does nothing on ship builds.

Conditionally outputs a formatted error message to NEDbPrintfW, adding the file name and line
number where the error occurred. This macro is only present in Debug and Retail builds; it does
nothing on ship builds.

Asserts an expression and produces a DebugBreak if the expression is FALSE. This assertion is
only present in Debug builds; it does nothing on Retail and Ship builds. This macro assumes that
a global variable dpCursettings has already been defined, where dpCurSettings must be a
DBEGPARAM structure.

Asserts an expression and produces a DebugBreak if the expression is FALSE. This assertion does
not assume dpCurSettings is present. The assertion is only present in Debug builds; it does
nothing on Retail and Ship builds.

Asserts an expression, and if the expression is FALSE, produces an error message to
NKDbgPrintfWand a DebugBreak, This macro is only present in Debug builds; it does nothing on
Retail and Ship builds.

Conditionally outputs a pattern to WriteDebuglED. This macro is only present in Debug builds; it
does nothing on Retail and Ship builds.

Conditionally outputs a pattern to WriteDebupl ED. This macro is only present in Debug and
Retail builds; it does nothing on Ship builds.

S
~N

Module 7 - Drivers 299

; Py
3 Device Driver Concepts

7

AN

e An Overview of Device Drivers

» User * Lab Goals

1. Understand driver interaction with application
2. Use kernel debugger to investigate call stack

e Load 3. Understand the integration and use of Debug
e Lab 1 Zones

* VVideo
. Deb‘ EEIIIE VI LTIV T J

e Hang

» Lab 7.2 — Debugging a Device Driver

e Review

Module 7 - Drivers 300

4 N\
Device Driver Concepts

. /

7 N\

e What is a Device Driver?

e Driver Types

e An Overview of Device Drivers

e Stream Driver Architecture

e User Mode Driver Framework

e Loading a Stream Driver

e Lab 7.1 - Integrating a Device Driver
e Debugging Device Drivers

e Lab 7.2 — Debugging a Device Driver

» Review

Module 8 - Customizing the OS Design

301

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

Customizing the
OS Design

Module 8 - Customizing the OS Design

302

p
. Course Outline

.

7

e Module 1:
e Module 2:
e Module 3:
e Module 4:
e Module 5:
e Module 6:
e Module 7:
» Module 8:
e Module 9:
e Module 10:

e Course Introduction

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development
Testing & Verification

e Course Review

Module 8 - Customizing the OS Design 303

Customizing the OS Design

The Catalog
» Lab 8.1 — Adding an Item to the Catalog
The Shell Options

Lab 8.2 — Replacing the Standard Shell with IESHELL
SDKs

» Lab 8.3 — Exporting an SDK
Review

Module 8 - Customizing the OS Design

304

; Py
Customizing the OS Design
\ v,
7/ N\
» The Catalog
® Lab 4 Addisma seléaen e thbho Fat~los
e Thed” Extensible database of components used to
| create as OS Design
¢ Lab &« patabase is comprised of “pbcxml” files located
» SDKs| in catalog branches of the build tree
e Lab 8.3 — Exporting an SDK
e Review
\ A

Module 8 - Customizing the OS Design

305

The Catalog (continued)

The Catalog Items View

Provides
Hierarchal view
Filtering

Searching based on
name or sysgen name

Viewing dependencies
Adding to design
Removing from design
Viewing properties
Viewing reasons for

inclusion of system
added items

Browsing ©

Catalog Items View « 0 X
=] Filter = | |F] | <Search> L |
= @ TrainingQsDesign
+#- [BSP
3l Core O3
= [CEBASE

i [0 Applications - End User
_J Applications and Services D
4 Communication Services ar
3 Core OS Services
+-Ld Device Management
[File Systems and Data Store
3 Fonts
+-[Graphics and Multimedia Te
- International
41 Internet Client Services
#-(J Security
& [Shell and User Interface
+ 4 Voice over IP Phone Service
+-_d Windows Embedded CE Errt
¥ Device Drivers
_d Third Party
=3 BSP
P TrainingBSP: ARMVAI
i [Monotype Imaging

‘ i]

@Y Solution ... | @ Catalog ... & Class Vie

The items that the Catalog contains range from BSPs, core operating system (OS) functionality, transport layers,
to device drivers. You can also display additional items, which you or a third party create, in the Catalog by
importing information about the items in Catalog item (.pbcxml) files.

The catalog contains sub folders that contain items. Each item is either a module or component of a module
that you can select to include in the run-time image.

You can import and export XML Catalog files to add third party items.

The Catalog Items View shows all the Catalog items that you can add to the OS Design, including BSPs, core
operating system (OS) functionality, transport layers, and device drivers. You can also use filters to display only
the Catalog items that are included in your OS Design.

To determine which Catalog items are included in an OS Design, choose Filter, and then User-selected Catalog
Items and Dependencies. View the Catalog items in your OS Design by expanding the nodes in the Catalog item
tree.

Check Boxes are user added items, in this case the CE test Kit - CETK
Green squares show system that the items was added to support an other item.
We will see how you can view these dependencies.

If the Catalog Items View is not visible select Catalog Items View from the Other Windows Menu Item under the
View Menu.

Module 8 - Customizing the OS Design

306

[The Catalog (continued)
/

/\

Fie Edt View Project Build Debug Turget Tooh ‘Window Community Help
@- -G d s L - B b TrainingBSP 4 = Fiatform Builder (TGTCPL = | @) sourcebns -]Fm j

B Device: CE Device -0 s B F P
Catalog ams View S BX StatPage

- X |Properes -0 x
P Fiter - 4 <Search o | * | TrainingBSP: ARMYAL Board Suppost Package =
3 Graphazs, Windownny + [S ee petl . w3l
] Mierl 01 Con & Visual Studio2005 o
[H] Miramal GWESC. . . . W T ;

[6] Minienal bnpus Ce
[8] Miramal Window
& 0 Shell

Dharvenload Windews

-3 Usar Interface Thu, 17 May 2087 285

& 3 Visice oves 1P Phane Sery Windows Embedded

1 [Windows Embedded CE was annaunced durin

4 [Device Dinvers Mabilize: Exploce The
21 Third Party

Mon, 07 Wy 2007 18:
of Windows Embedds
Win & Trip To Mew 2
Thu, 2 Mar 207 10:3

“ W '
50 Salution . | @ Catalog .. 5 Class View | ¢ = '
Outpat -0 %
Show output from: Windows CE Debug . % 3

16360935 PID: 3fal0de TID:3feO0d4e CEITLC Close stream

16361017 PID: 3fa004s TID:3fe004e Opening KITL st strned”

uITer SEATEE0ZE00I0000 #RASOEED0IEA00

16361023 PID:31a0048 TID: 3140048 KETL sEress st
16361151 PID:3fad04w TID: I{a004w CKITLComme.
16364548 PID: 400002 TID:3fe004e Warning: you
16364551 PID: 400002 TID: Ife004e MARNING: Boot

* MName
4 Naene of catalog item.
3] Owtpast 5 Find Resuts 1

| oy

\ .

A Catalog item is specifically included in the OS Design by a design template or by the OS developer. A Catalog
item might also be added during the build cycle if it is a dependency of another item.
The Cesysgen.bat file controls additional batch files, which contain dependency rules that the build system

compares against the items in your OS Design. The IDE tools automatically include additional Catalog items that

are required to support the Catalog items initially included in the OS Design.

Each time you add or remove a Catalog item from your OS Design, or perform any other action that requires a
Sysgen of the OS Design, the display of Catalog items is refreshed. The Build tab in the Output window also
displays a list of Catalog items added due to dependencies.

Each time this process is run, the system starts with only required Catalog item functionality and no dependent

items.

The properties of catalog items will vary based on the context of the item selected.

Module 8 - Customizing the OS Design 307

The Catalog (continued)

Viewing Reasons for Inclusion

——

Remove Dependent Catalog ltem 3 ’ g 7 B

Catalog em Closs
Wingding

One or mote uzer-sselected platform seltings depend on this item. To remove this dependent item from the
phatform, follow the instructions below.

Remove catalog iterc “Tntemnet Explorer 6.0 Sample Browser™

Catalog View - Catalog Dependencies
You can visually determine dependencies, by right clicking on a item in the catalog view and selecting Reasons
for Inclusion of Item.

Note: This functionality is for system included items only.

Build Process - Catalog Dependencies

During the build, Platform Builder runs Cesysgen.bat to discover which Catalog items to bring in by
dependency. Through examining Cesysgen.bat, which specifies Catalog item dependencies, you can discover
which Catalog items depend on a selected Catalog item to function properly. For more information, examine
the Cesysgen Batch File.

In the following example of a Catalog item dependency, if your OS Design has SYSGEN_MODEM set, it brings in
SYSGEN_PPP.
if "%SYSGEN_MODEM%"=="1" set SYSGEN_PPP=1

Module 8 - Customizing the OS Design

308

/7 Py
The Catalog (continued)
\. J
a N\
» Opening a Catalog Item File for Viewing /Editing
.‘rlz:-."‘“ Debug Target Tool: Window Communiy Help -
- GH@ 4 o8B = -0 e =]
Cpen File 4 5 i .
’4' Logkin b CATALOG E| 3~ ¥ (G [= Tooli™
:.] - Illur]:gis Date modd.. Type Sixe Tags
SR S
)
o
RN
My Computer
£ f
x
Bl
File namet z|
Files of pype: Platform Budder Catalog Files (* pbesmi; “ cec) El Cancel J
(3 Outpest [hPerding Checking | 3 Ervar List
\ /

You can use the Catalog Editor to view and edit Windows Embedded CE 6.0 Catalog item (.pbcxml) files, which

are XML-based files that contain metadata about the associated Catalog item.

In Windows Explorer, when you choose to open a .pbcxml file, Windows Embedded CE 6.0 opens the Catalog

Editor. The visual interface is much like that of other Visual Studio editors and components.

Module 8 - Customizing the OS Design

309

The Catalog (continued)

Viewing/Editing through Graphical Interface

- TrainingGiDesign (funning - Micrasal: Visual
| Fde Edit Veew Project Bulld Debwg Tarmet Tooh Window Commundy Help
i SGH@ A - il
il 1
| wa 3-0iNE = | Device: CEDevice
Propartie = B ¥ TrainingHSP.phcxml - ¥
Power Button Catalog kem R P Eax -G
Suj4l @ Catsog [Cument fis]
3 Thed Patty
5 Help File Astribute -3 BSP
5 fes ICollectian) [TrsrngBSP: ARMVAI
a 2 Device Drvens
= 0] Ao
L] Battay Duver
2] Display
- 4l Input Devices
EMSDevicee midaton powerbutton. i1] Motiication LED
WS Devicee miatonPowerButton: 4 {3 PCCud
e mGenerioPowerButtornDevic « 0 [
i Senal
. 4 4 S8 Funcion
{Callection) 41 3 US Mou
ICollectionl Ethemes Bonticader frboct]
3 Stenage Devces
Optional, Commerits shout this ftem, Dat in the Commart praperty ae not
wsed by Platform Builder.
& Salubian Explores [T} o S Properties * Catalog Editor | = Source
2 List - X
Q9 Emons 1,0 Waimings | (1) 0 Masing
Dascription F Lin
i
Hl Dutput [Pend eckin| 3 Error List
Fueady

You can use the Catalog Editor to view and edit Windows Embedded CE 6.0 Catalog item (.pbcxml) files, which
are XML-based files that contain metadata about the associated Catalog item.

In Windows Explorer, when you choose to open a .pbcxml file, Windows Embedded CE 6.0 opens the Catalog
Editor. The visual interface is much like that of other Visual Studio editors and components.

Compatibility - To modify the supported CPUs for the Catalog item, enter the CPUs that you want to support in
the Supported CPU field. By default, this field is empty. Specifying a CPU means that your Catalog item is
supported by only the BSPs that support the same CPU.

General - If you want to include Help for your Catalog item, enter the link for the Help associated with the
Catalog item in the Help Link field. The two size items are related to proving a size estimate in bytes for your
catalog.

Identification - Comment and Description are optional and non essential but can be handy.

To modify the friendly name displayed in the Catalog, enter the Catalog item name that you want to use in the
Title field.

To modify the unique ID associated with the Catalog item in the Catalog, enter the ID string that you want to
use. Note: Itis recommended that you use an ID string that begins with the Catalog record type and the
vendor name to avoid Catalog collisions. For Catalog items, this uses the format
Item:DefaultVendor:DefaultitemName.

Additional Variables - You can specify additional variables for the sysgen of this item using this item.

Modules — Specify the name of the item that will implement functionality such as BarCodeSCanner1.DLL.
Notifications can be used to provide information to the user when the item is added to the catalog.

Source Code Link: In the Properties pane of the Catalog Editor, you can view and modify the default name and
path properties of the source code link. To edit the name that is displayed, enter a friendly name for the source
code path in the Title field. To edit the path for the source code link, enter the directory path or browse to the
source code for the selected Catalog item in the Path field.

Location - Related to where the catalog item will appear in the catalog view.

Projects - One or more projects can be included with the catalog item

Module 8 - Customizing the OS Design

310

p
kThe Catalog (continued)

~
» Viewing/Editing in the XML View

File Edt View Project Duld Debug Target XML Tools Window Community Help

5 (8] Storage Deviers

- 58 Fusciien Bapltenids 1Co:Ratr

Encodng Unicode [UTF-8]

3 SHd@ X F=5 b TrainingBPJ = Platform Bubder { TGTCPL = | [stub
deds D%t e TS3 1D AR
Device: CEDnite - % o,
[Cutalog Iems View -0 x = % | |Properes
[Filter = |) <Searchs -0 ding="utt-8% % _.I WML Doctament
3 <CatalogFile xmln: hato:/ v,), ora 200
&0 B . <Filalngormat io "yileIntormas son: denecs 0 e 24
-0 Com 03 <Title>TeminingBSP</Tic lex ¢ [ar™
= [Devce Drivers <bescription>Training®sF BSP Catalog Item
-0 Sudic <Vendor>Gener1Co</ Vendor> e
(S Bus Drwvers <0SVersion>5.00</OSVersion> et
4 Camens <Fileversion»1,04/F1leVeraions Bty
a0 Dwect30 Mobile b «/Fileintorsations Stylesheet
4 3 Dingiley 1 <Hap ld=~Bsp:GeneriCo:Training8sP:ARNVA1™>
) (8 Input Dices <Title>TrainingBSP: ARMV4I</Ticles
& (8 Networking <bescriptionsNy Training BSP</Description
4 8 PC Card <Piatformbicefior > TeatningSP</ Plattormd
g L <CpuldrCpus ARNVAL</Cpulis
4 00 0 | <BapltenldsItem:CeneriCorEthsrnstBoat lond
4 Seral <BspltentdsItemtGeneriCorbay_keybd_jpnitD
0 Smancard <BapltenidsItem: CaneriCo:Hats 1 xKeyboasdits

<Bapltenlds Item: Ganer 1Co: Ratr ixKeyboardio
<Bapltenld IvemiGener 100 Natrixkeyboardio

 (USB Hot
] Whacosen Ervicited CE Tt ot <Bspltenlds Item: Gener 1Co: Pover But ton: Devi
= B
[7] TraimingBsP: ARMVE
@ (A Dewice Drvers

Ethernet Bootiosder (kbact) = R Tttt e

neriCo:Batterydeiver:De
neriCorMorificarionlEb:

x fhmsnns.Dissins,

Jolution Bl | Cutalog e FChass View | ® Catalog Edtor | = Source

<BapltemidsItem:GeneriCo:CirruslogicCLPDE

=18 Third Party <Bapltenlds Item: Ganar1Cot Sar ialDeiver :Day

meriCoiDiaplayiDevicets

Character encading of the document.

| Ressy n1}

Col 18

Ch1d

NS

\

\

®

You can use the Catalog Editor to view and edit Windows Embedded CE 6.0 Catalog item (.pbcxml) files, which
are XML-based files that contain metadata about the associated Catalog item.

In Windows Explorer, when you choose to open a .pbcxml file, Windows Embedded CE 6.0 opens the Catalog
Editor. The visual interface is much like that of other Visual Studio editors and components.

Module 8 - Customizing the OS Design 311

The Catalog (continued)

Select File -> New
Select Platform Builder Catalog File
Edit file as necessary
Save to one of the catalog locations
%_WINCEROOT%\public\<any single directory>\Catalog\<any #
subdirectories>*.pbcxml
Microsoft catalog items
%_WINCEROOT%\platform\<any single directory>\Catalog\<any #
subdirectories>*.pbcxml
This is generally for BSPs
%_WINCEROOT%\3rdParty\<any single directory>\Catalog\<any #
subdirectories>*.pbcxml
3rd Party catalog items that are not BSPs
% _ WINCEROOT%\platform\common\src\soc\<any single
directory>\Catalog\<any # subdirectories>*.pbcxml
Microsoft BSP common catalog items

Typically the public and platform common paths are reserved for Microsoft.

Module 8 - Customizing the OS Design 312

The Catalog (continued)

Exporting a Catalog Item from the Catalog

In Windows Explorer, navigate to the location where your
Catalog item (.pbcxml) file is located.

Copy the .pbcxml file and all related source code files into
a new folder, and then zip the file for export.

Using independent XML files allows the catalog file to be managed by source control tools such as Microsoft
Visual Source Safe.

Module 8 - Customizing the OS Design

313

p
kThe Catalog (continued)

-

SHd s
r 0w
—

E

B File
File Vession
0% Venion
Vendor

B identification
Camment
Deseription
Tata

Comment

wsed by Plutform Builder,

Optional, Comments sbout this tem. Dt i
ed

Salutesn Explorss [Class View | 25 Prop)

Fhe Edit Veew Project Buld Debug

Training@SP Catalog File Information

10
.00
G

Traind
o sind

» Validating a Catalog File

Target Tools Window Community Help

|
3 - & . L | Device: CE Device
" = 0X| TrainingBSP phcxmi
B | | Eas -
Catalog [Cument ile]
=3 ThedPaty
= 3 BsP
=[] TrarngBSP ARMVAI
Validate Catslog Data 1] Bty Diver
Dicglay
Wialdstarr Seige. £ Ingut Devices
Caarent e] Motication LED
Opereed Fies] Power Bution
@ AN Cataiog Files ~frerd
o

3

Feady

Description
1" and
' AWING phoanl® with
beri. lgronng (file “CAMINCESDD
\platform\ Training B atalog\ 1M1\ devat eernadatoritrngs. pheaml™),
@2 ComalogId "SwingT CAWINCESD
" and
*CAWINCEGIIp g pheami” with
equivalent Igreoring “CAWINCESOD
i phcemt).
3 Owtput FPendin 34 Error List

File Line.

devaermulatorstrings.pbcs 0

-3 X

\.

AN

/

You can use the “Validate” item in the catalog editor to look for any issues. Use the tabbed dialog to look for

any warnings as well as resolve any errors before moving on.

Module 8 - Customizing the OS Design

314

7

5 Customizing the OS Design

7

e The Catalog

e Lab 8.1
e The Sh

— Adding an Item to the Catalog

Ot

e Lab 8.4
e SDKs
e Lab 8.3

* Lab Goals

* Understand how the Catalog works
* Be able to add items to the catalog
* Video

e Review

AN

Module 8 - Customizing the OS Design 315

' P
5 Customizing the OS Design)
a4 N\

e The Catalog

e Lab 8.1- Adding an Item to the Catalog
» The Shell Options

e Lab §

* Installing a Custom Shell

© SDKS « shell Shortcuts

o Lab § « Startup Folder

» Revil * Typical Welcome Application

Module 8 - Customizing the OS Design

316

The Shell Options (continued)

A shell comprises:
A set of user interface components
Underlying support routines
Could be a stand alone application

The shell architecture in Windows Embedded CE

Allows you to implement a wide variety of shells.

Allows you to select only those components that you
need to develop a custom shell, based on the hardware
requirements of your device

Module 8 - Customizing the OS Design

317

The Shell Options (continued)

Shell access from the P T R
Cata'og View = [Shell and User Interface

3 Graphics, Windowing and Events
[®] minimal GOI Configuration
[®] Minimal GWES Configuration
[®] Minimal Input Configuration
W] Minimal Window Manager Configuration
= {23 Shell
[AYGShell AP Set
= [Command Shell
[Command Pracessor
[Console Window
A Graphical Shell (Choose 1)
@ Standard Shell
- Windows Thin Client Shell
= 3 User Interface
[Accessibility
4 B8 Common Controls
[®] Commaon Dialog Support
[®] Control Panel Applets
[] Controls Option 8
Customizable Ul

g0

Menu Tool Tip
Mouse
Nebwork User Interface
Onverlapping Menus
[¥] Quarter VGA Resources - Portrait Mode
[Software Input Panel
5[] Touch Screen (Stylus)

fm e e) emns €

HEEED

3 Solution Explorer | @ Catalog Thems View 2 Cla

Command Processor Shell - Includes an application for a command-line-driven shell that provides console input
and output and a limited number of commands. This functionality is also available on headless OS Designs.

The Standard Shell - Provides a shell that is similar to the shell on the Windows-based desktop operating
systems. The source code for this shell is available for customization. %_WINCEROOT%\Public\Shel\OAK\HPC

Thin Client Shell - The Windows Thin Client design template provides the starting point for remote-desktop
terminals through support for Microsoft RDP or other terminal software. Formerly known as Windows-based
Terminal (WBT), the Windows Thin Client is a minimal version of Windows Embedded CE that includes the
Catalog items necessary to support a Remote Desktop device — including a constrained shell and Microsoft
RDP.

Module 8 - Customizing the OS Design

318

\

' N
The Shell Options (continued)
\ A
a4 N\
» Standard Explorer shell
» Provides start menu,
task bar, desktop, AT o
wallpaper, etc...
» Provides familiar look and
feel
/

Windows Embedded CE allows you to implement a wide variety of shells from simple command line interfaces
to fully customized graphical user interfaces adapted for your target device. A Windows Embedded CE shell
consists of modules and components that each provide a specific area of shell functionality.

Module 8 - Customizing the OS Design 319

The Shell Options (continued)

Command Shell

Resembles the command.com in and cmd.exe in previous
Windows versions

Is useful for headless devices with no display

Only interface is the command line, does not have GUI
available

Is limited to standard C library 1/0O functions

Uses registry settings to direct to serial port

For many target devices, including those without a display, Windows Embedded CE includes a Command
Processor shell that is similar to Command.com in Microsoft® Windows® 95 and Cmd.exe in Microsoft Windows
NT®. It is a command-line-driven shell that provides a limited number of commands. To implement the
Command Processor in an OS Design, include the Cmd and Console components in the Cesysgen.bat file.

To use the Command Processor shell as a command-line interface for target devices with no displays, configure
the Command Processor to operate over a serial port.

The following example shows how to set the registry values to allow the Command Processor to operate over a
serial port.

[HKEY_LOCAL_MACHINE\Drivers\Console]
OutputTo = REG_DWORD:1 // Redirects CMD to COM1
COMSpeed = REG_DWORD:19200 // Speed of serial connection

Module 8 - Customizing the OS Design 320

The Shell Options (continued)

Sample Taskman Shell
Is a starting point for developing a custom shell

Includes
Creates a full screen desktop window
Provides a Task Manager window
Provides a Run button

%_WINCEROOT%\Public\Wceshellfe\Oak\Taskman

TaskMan is a full-screen desktop window and a zero-height taskbar window that are registered with the
Graphics, Windowing, and Events Subsystem (GWES) so that certain windows can be hidden behind the
desktop. Shortcut keys, such as ALT+TAB, CTRL+ESC, and CTRL+ALT+BACKSPACE, are sent to the taskbar
window.

A Task Manager window that lists all of the running top-level windows and enables a user to switch to or stop
an application. The shortcut keys ALT+TAB, CTRL+ESC, and CTRL+ALT+BACKSPACE invoke the Task Manager
window.

A Run button that enables a user to launch a file is also part of TaskMan.

Module 8 - Customizing the OS Design 321

The Shell Options (continued)

Application as shell
Browser Control

Any application
Managed
Native

Not required to display

Examples of a Custom Shell
Medical Monitoring Device
ATM

Industrial control system

Often you will not want your device to look like a standard Windows interface with at toolbar at the bottom of
the screen and a bunch of icons on the desktop. A custom shell will allow you to make the GUI look like
anything you want.

Module 8 - Customizing the OS Design

322

The Shell Options (continued)

Kernel loads applications listed in registry
HKEY_LOCAL_MACHINE\Init
LaunchXX — Lists Application to load at boot time
DependXX — Lists Application dependencies

[HKEY LOCAL MACHINE\Init]
"Launchl0"="shell.exe"
"Launch20"="device.dl1l"
"Depend20"=hex:0a,00
"Launch30"="gwes .d11"
"Depend30"=hex:14,00
"Launch50"="explorer.exe"
"Depend50"=hex:14,00, le,00
“"Launcheé0"”"="MyShell .EXE"
“"Depend60”=hex:14,00,1e,00

Module 8 - Customizing the OS Design 323

The Shell Options (continued)

Launched by Kernel at boot based on XX in LaunchXX
Command line to App is an integer “token” as a string

Cannot have other parameters

To allow dependent Apps to start, startup applications must
call SignalStarted() with the token converted to an integer

int WinMain (HINSTANCE hInst, HINSTANCE hPrevInst,
LPWSTR lpCmdLine, int nCmdShow)
{

SignalStarted(_wtol (1pCmdLine)) ;

/7. ..

Whenever a process is loaded by these launch keys it is given a command line parameter that is some token
that is ultimately a string that is converted to an integer and used in a call to a function called SignalStarted.
So in this example it takes the command line converts it from a Unicode string into an integer and calls
SignalStarted.

SignalStarted

This function must be called by all applications that the kernel starts at startup through the
HKEY_LOCAL_MACHINE\Init registry key.

The system passes the application its sequence identifier character string on the command line of the WinMain
entry point.

Note The command line cannot be used to pass any information other than the sequence identifier. If an
application must have information passed to it during boot, it can read the information from the registry or
from a configuration file. When the application has finished initialization, it converts the string to a DWORD and
passes it to SignalStarted. If SignalStarted is not called by such an application, other applications that are
dependent on its launch will never run. If SignalStarted is called but the application does not run at startup,
system operation will not be affected.

Module 8 - Customizing the OS Design

324

The Shell Options (continued)

Shell Shortcuts

Small file (ASCII text) that references a file in a different
location

Syntax is
nn#"<path>"
- Where nn is the number of characters following the ‘#’ in ASCII

No need to copy entire EXE from ROM while allowing
placement of the shortcut into a user defined folder
structure

22#"\Windows\Welcome.exe"

Module 8 - Customizing the OS Design 325

" The Shell Options (continued)

Startup Folder

At boot Standard shell looks at \Windows\Startup and
runs programs (or shortcuts) located there

. Useful for launching applications at boot time

Startup folder must be created in a custom .DAT file; does
not exist by default

Directory ("\Windows") : -Directory ("StartUp")
Directory ("\Windows\StartUp") : -
File (“Welcome.lnk","\Windows\Welcome.lnk")

Module 8 - Customizing the OS Design

326

The Shell Options (continued)

/

\.

» Welcome Application Sample Code

#include "stdafx.h"
#include <shlwapi.h>
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int
nCmdShow)
{
HEEY hEey;
DWORD dwType, dw=0;
TCHAR startupPath[MAX PATH]
// Check for Touch Calibration Data
if (ERROR_SUCCESS == RegOpenKeyEx (HKEY_ LOCAL MACHINE,
_T("HARDWARE\\DEVICEMAP\\TOUCH") , 0 ,NULL, £hKey))
{
if (ERROR_SUCCESS != RegQueryValueEx (hKey, TEXT("CalibrationData"), NULL, &dwType,
NULL, &dw))
{
RETAILMSG(1l, (TEXT("No calibration data, attempting to calibrate.\r\n"))):
TouchCalibrate() ;

}
RegCloseKey (hKey) ;
}
/f This will delete the link so it won't run again on warm boot,
// This particular app is harmless te run again as it won't
/{ calibrate the touch panel a second time. However, a full
// "Welcome" app would be a bit annoying on every boot cycle.
i
if (SHGetSpecialFolderPath (NULL, startupPath, CSIDL_STARTUP, FALSE))
DeleteFile (PathCombine (startupPath, startupPath, T("TouchCal.lnk")));
return 0;

/\

This code shows one approach to running a “TouchCalibrate” program only once.

Module 8 - Customizing the OS Design 327

4 P
5 Customizing the OS Design)
7 N

e The Catalog

e Lab 8.1 — Adding an Item to the Catalog

e The Shell Options

» Lab 8.2 — Replacing the Standard Shell with IESHELL

e SDKs

| * Lab Goals
e Lab 83 1. Understand the fundamentals of
e Reviey implementing a custom shell

* \/ideo

Module 8 - Customizing the OS Design 328

Customizing the OS Design

SDKs

* The files needed to build an application from
Visual Studio for a device
* SDK headers
* Libraries
* Help documentation
* Other files

An SDK is a set of headers, libraries, connectivity files, run-time files, OS Design extensions, and Help
documentation that developers use to write applications for a specific OS Design. The contents of an SDK allow
developers to create and debug an application on the run-time image built from your OS Design.

You can use Platform Builder to develop an SDK based on your custom OS Design for installation on another
development workstation. You should rebuild the runtime image and then build the SDK when you make
changes to your OS Design.

During the SDK development process, Platform Builder tracks the core OS modules that belong to an OS Design,
eliminating the need for you to describe the modules and components containing the technologies that the
associated SDK should support. Instead, Platform Builder includes the headers and libraries associated with the
modules and components in your OS Design in your SDK.

If you include a technology in your SDK that your OS Design does not support, a run-time error occurs when
someone attempts to access that technology in the IDE.

You can only use Windows Embedded CE 6.0 SDKs with Microsoft Visual Studio® 2005 SP1 or greater to create,
debug, and run custom applications.

Module 8 - Customizing the OS Design 329

SDKs (continued)

Prerequisite

Build OSDesign
Creating

From the Project menu select Add New SDK
Building

From the Build menu select Build All SDKs
Installing

The SDK MSI file can be moved to another computer and
run.

Platform Builder can be used to build an SDK specific to an OS Design. By providing an SDK that is specific to
your OS Design, you can accurately present to the application developer all of the capabilities and limitations of
your OS Design. Other SDKs might not support all functionality supported by your OS Design, or they might
support functionality that is not included in your OS Design.

Product name - Name exposed to OS during installations and uninstalls.

Company name - Name of your company.

Company Web site - Web site for your company.

Product version - Versioning to allow the installer to compare differing installations.

MSI Folder Path - Fully qualified path name for the location of the .msi file your users will run to install the SDK.
MSI File Name - Name of the installer program.

Locale - The locale you want to use for the user interface language.

After you create an SDK for an OS Design, you can add files to the SDK by choosing Additional Folders on the
SDK Properties Page.

When you use Platform Builder to configure and build an SDK, the result is a MSI package. This package
contains information required to install or uninstall an SDK, using the Windows Installer. The Installer
automates the SDK installation process. During this process, it creates an entry for the SDK in the Add or
Remove Programs dialog box under Control Panel on your development workstation. This allows a developer
who installed your SDK to later remove it in a straightforward manner.

The MSI file can be moved and has a straight forward, click next install. You can over ride the install directory if
so desired.

Customizing the OS Design 330

SDK

' Platform Builder

‘ CE 6.0 0S Design OEM Adaptation Layer

(OAL) Run-time Libraries

l

Custom SDK

Platform Manager SDK Documentation

Run-time Files Headers and Libraries

!

Microsoft Embedded Development Software

Visual Studio 2005

OS Design Extensions

An SDK is a set of headers, libraries, connectivity files, run-time files, OS design extensions, and Help
documentation that developers use to write applications for a specific OS design. The contents of an SDK allow
developers to create and debug an application on the run-time image built from your OS design.

You can use Platform Builder to develop an SDK based on your custom OS design for installation on another
development workstation. You should rebuild the runtime image and then build the SDK when you make
changes to your OS design.

During the SDK development process, Platform Builder tracks the core OS modules that belong to an OS design,
eliminating the need for you to describe the modules and components containing the technologies that the
associated SDK should support. Instead, Platform Builder includes the headers and libraries associated with the
modules and components in your OS design in your SDK.

If you include a technology in your SDK that your OS design does not support, a run-time error occurs when
someone attempts to access that technology in the IDE.

You can only use Windows Embedded CE 6.0 SDKs with Microsoft Visual Studio® 2005 SP1 or greater to create,
debug, and run custom applications.

Customizing the OS Design 331

SDK Development Steps

Build OS Design — create a run-time image

Configure the SDK — use the SDK Wizard to
configure basic settings

Build the SDK - created SDK is a Microsoft
Windows Installer (MSI) package

Install the SDK on Visual Studio 2005

As a developer of a Microsoft® Windows® CE—based OS design, you can provide an application developer with
the information necessary to develop an application specifically for your OS design. You can use Microsoft
Platform Builder to generate a software development kit (SDK) for your OS design.

An SDK supports the functionality that you include in your OS design. By providing an SDK that is specific to
your OS design, you can accurately present to the application developer all of the capabilities and limitations of
your OS design. Other SDKs might not support all functionality supported by your OS design, or they might
support functionality that is not included in your OS design.

Customizing the OS Design

332

.

Configuring the SDK Options - General

/’_

SDK1 Property Pages

« Configurable SDK properties

SDE Name:

|Barf.ode$eanne|

Product Name:

|DCDBO0D Bar Code Scanner

Product Yession (format 00,00 0000)

Maiog: |1 Minor: {00
Company Nagme:

Buid [0000

|ScanCo
Company Website:

| v men. com

0K | Cancel

N

N\

Product name - Name exposed to OS during installations and uninstalls.
Company name - Name of your company.

Company Web site - Web site for your company.
Product version - Versioning to allow the installer to compare differing installations, using the format

00.00.0000.

Customizing the OS Design

333

[Configuring the SDK Options - Install

-

SDK1 Property Pages

General
License Terms
CPU Families

Addtional Folders

« Configurable MSI install properties

M| Folder Path:
|CNWINCEBO0NDSDesigns\DCDE000_VI\DCDB000_VI\SDKASDKI\MSI i

MS| Ede Name:
|BaCodeSOK1 msi

Locale:
|us. Englsh =]

s

/\

>

This category of the SDK Tool Property Pages Dialog Box enables you to configure installation properties for the

SDK.

MSI Folder Path - Fully qualified path name for the location of the .msi file your users will run to install the SDK.

MSI File Name - Name of the installer program

Locale - The locale you want to use for the user interface language.

Customizing the OS Design 334

'\
Configuring the SDK Options — CPU Families
\ y,
N
« Configuring CPU family supported by SDK
SDK1 Property Pages Bu
Corral The following st shows the configurations of your DS design that are supported by
Tnstel your SDK. These configurations are grouped by CPU famiy. To choose a suppoited
ot e configuration for a CPL famiy, sehect the entry for the CPU famdy, and then chok Edit
Readme oot
(CPU Familes CPU Farmdy
w. iFot;m B lanmval
Device Emulator ARMVA| Debug
Device Emulator ARMV4| Release
Corce
N y
CPU Family

This category of the SDK Tool Property Pages Dialog Box enables you to select the CPU family OS configurations
that you want your SDK to support installation properties for the SDK. The CPU families listed on this page are
derived from the CPU families selected during Platform Builder setup. Check the box next to the CPU family for
each OS configuration you want your SDK to support.

Customizing the OS Design

335

.

Configuring the SDK — Adding User-defined Files

7

N

Add additional folders from the SDK’s Properties Pages

SDK1 Property Pages

General *You can choose to include additional directones in your SDK. The source diectony iz a
Instal fully-qualified path to a local deectory. The taiget deectory is a path relative to the
License Terms BN e e W B A
Readme Inchude Sublolders Souce Folder Taget Foldes

CPU Famibies |

Development Languages

Addtional Folders

Enudation

Source folder
|CAWINCEBOMNOS Designs\TrainingDS Designi TraringDSDesgriLeakingt | [

Target path:
' |
[ok J[concel |[sowy |

AN

P

After you create an SDK for an OS Design, you can add files to the SDK by choosing Additional Folders on the

SDK Properties Page.

Customizing the OS Design 336

~
- -
[Building an SDK
S
From the Build menu, choose Build All SDKs.
Fle Edt Vew Projct |Buld | Debup Target Took Window Commurky Hep
|- 5 i @ |&5 Buldsoltion F7 |
dom.@ Rebuid Solution Chri+Al-+F7 l
Device: CE Device - | Closh Johod l
Build TrainingOSDesion E“_._.. ‘opp | iEShen o
Rebuld TrainingGS0esign [v_CLASSES_ROOT
Clean TrainingOSDesign IY_CURRENT_USER
{_LOCAL_MACHINE
Advanced Buld Commands * Comm
& [Device Drivers Build All Subprojects ELIMZ:!'
@ __jl:L:F:pmMWW Rebuid All Subprojects Ident
R | arty
| euidal soKs... PYSTEN
i gwe
Copy Files to Release Directory ;'_I Hibemate
Windows CE Tools
Make Run-Time Image I'Y_USE RS
B Open Release Directory in Buld Window |
Global Buid Settings »
Targeted Build Settings gl

\\ /

When you use Platform Builder to configure and build an SDK, the result is a Microsoft® Windows® Installer
(MSI) package. This package contains information required to install or uninstall an SDK, using the Windows
Installer. The Installer automates the SDK installation process. During this process, it creates an entry for the
SDK in the Add or Remove Programs dialog box under Control Panel on your development workstation. This
allows a developer who installed your SDK to later remove it in a straightforward manner.

Customizing the OS Design 337

Installing the SDK

¢ Installing the SDK on other development
machines (with VS 2005 SP1)

15/ DCD6000 Bar Code Scanner Setup &

@ Welcome to the DCD6000 Bar
Code Scanner Setup Wizard

The Setup Wizard will install DCDS000 Bar Code Scanner on
your computer. Click Next to continue or Cancel to exit the
Setup Wizard.

(o]

The MSI file can be moved and has a straight forward, click next install. You can over ride the install directory if
so desired.

Module 8 - Customizing the OS Design 338

4 P
5 Customizing the OS Design)
a4 N\

e The Catalog

e Lab 8.1 — Adding an Item to the Catalog

e The Shell Options

e Lab 8.2 — Replacing the Standard Shell with IESHELL
e SDKs

» Lab 8.3 — Exporting an SDK

e Reyjaus
* Lab Goals

1. Be able to create an SDK for native code
development in Visual Studio 2005
* \Video

Module 8 - Customizing the OS Design 339

p
kCustomizing the OS Design
~

AN

e The Catalog

e Lab 8.1 - Adding an Item to the Catalog

e The Shell Options

e Lab 8.2 — Replacing the Standard Shell with IESHELL
e SDKs

e Lab 8.3 - Exporting an SDK

» Review

Module 0 - Introduction 340

-
.

Module 9 - Application Development 341

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

Application
Development

Module 9 - Application Development

342

p
. Course Outline

.

7

e Module 1:
e Module 2:
e Module 3:
e Module 4:
e Module 5:
e Module 6:
e Module 7:
e Module 8:
» Module 9:
e Module 10:

e Course Introduction

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development
Testing & Verification

e Course Review

Module 9 - Application Development 343

Application Development

Application Development Options
» Native Code Development

Managed Code Development

Lab 9.1 — Developing & Integrating a Managed App
Review

Module 9 - Application Development 344

Application Development

» Application Development Options

* Tools
' * Visual Studio 2005 SP1 (w/ Windows
Embedded CE add-on) - Subproject of OS
Design
« Visual Studio 2005 SP1 - Smart Device Project
* Languages
* C/C++, C#, VB and Assembler
* APlIs/Frameworks
* WIN32 (Native)
* MFC, ATL, WTL, STL (Native)
* .NET Compact Framework (Managed)

http://msdn2.microsoft.com/en-us/library/aa907963.aspx

Application Development

345

é . N
Language Options
J
a4 ~
Windows CE Custom Internet Client | | € C++ (Native)
L Application Application Services C#, VB.NET (Managed)
| Application Services | ¢, o+ (Native)
[Kernel |
-
C, C++ (Native)
OEM Adaptation Layer (OAL) Drivers Assembler
N\
N >

Module 9 - Application Development 346

p
kAppIication Development Options (continued)

V.
/ N
» Language/API/Framework Options

C# (Managed) .NET CF .NET CF .NET CF
VB (Managed) .NET CF .NET CF .NET CF
WIN32, MFC A, WIN32, MFC, ATL, WTL,
C/C++ (Native) WIN32 WIN32 WIN32 ATL, W‘i’L STE. MFC, ATL, ’ ST;. ' !
' WTL, STL
Assembler
(Native) AL

Module 9 - Application Development 347

[Application Development
/

e Application Development Options

AN

» Native Code Development

e Managed Cade Novelanment

elabd” Native Applications

* Must be rebuilt for each new CPU or Platform

e Revif « Requires SDK

* Developer manages system resources

* WIN32 runs without extra support files

* Can access all operating system services and APIs
* Must be rebuilt to run on desktop systems

* Supports COM, ActiveX programming

Module 9 - Application Development

348

Native Code Development (continued)

Native Code Frameworks

Microsoft Foundation Class Library (MFC)
Object-oriented application framework

Active Template Library (ATL)
Supports implementation of COM and ActiveX components

Windows Template Library (WTL)

A C++ library for developing Windows applications and Ul
components.

Standard Template Library (STL)
A C++ library of container classes, algorithms, and iterators

Frameworks ship with V52005 not CE 6.0
Frameworks must be manually integrated into OS Design

Module 9 - Application Development 349

Application Development

Managed Code Development
* Managed Applications:

* Built once for all devices

* Runtime engine manages system resources

* Requires runtime support files (.NET CF)

* Applications access the services exposed by the
Compact Framework
May run directly on desktop without rebuilding

The choice on CE between Native and Managed is parallel to the choice you would make on a desktop.

If the managed application uses device specific functionality not available in the desktop Framework (Such as
phone call management etc...) then it will not run on the desktop as there are no corresponding libraries for
that.

Managed applications access the services exposed by the Compact Framework, however, they can "escape" the
framework using Platform Invoke (P/Invoke) to call native APIs.

Be aware that the Compact Framework has background threads, such as garbage collection, that can impact
the (RTOS) Real Time Operating System behavior. Be sure and assess the impact of that behavior on your
applications with the specific device architecture that you are working with.

Module 9 - Application Development 350

Managed Code Development (continued)

Managed Application Development

Languages all compile to Intermediate Language format
C# application development

Visual Basic .NET application development
.NET Compact Framework (CF)

Device-side runtime support package for .NET applications
Common Language Runtime (CLR)

Execution engine to manage .NET applications

Just-In-Time compiler for intermediate language format
.NET Class Library

Form-related classes, Data and XML classes, and GDI support
Subset of desktop .NET Framework

The .NET Compact Framework is a subset of the full size desktop framework. The .NET Compact Framework is a
hardware-independent program execution environment for secure downloadable applications optimized for
resource-constrained computing target devices. It offers a choice of languages, initially Microsoft Visual Basic
and Microsoft Visual C#, and eliminates some of the common problems faced with language interoperability.

Module 9 - Application Development 351

' N
3 Application Development j
7 N\

e Application Development Options
e Native Code Development
¢ Managed Code Development

» Lab 9.1 — Developing & Integrating a Managed App

¢ Rey, Lab Goals

1. Develop and debug managed applications
in a separate Visual Studio 2005 instance
Integrate a managed application into a BSP

2.
* \Video

Module 9 - Application Development 352

p
kAppIication Development
~

AN

e Application Development Options

e Native Code Development

e Managed Code Development

e Lab 9.1 — Developing & Integrating a Managed App
* Review

Module 10 - Testing and Verification 353

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

Testing &
Verification

Module 10 - Testing and Verification

354

p
. Course Outline

.

7

e Course Introduction

e Module 1:
e Module 2:
e Module 3:
e Module 4:
e Module 5:
e Module 6:
e Module 7:
e Module 8:
e Module 9:
* Module 10:

Operating System Overview
Tools for Platform Development
Operating System Internals
Operating System Components
The Build System

The Board Support Package
Device Driver Concepts
Customizing the OS Design
Application Development
Testing & Verification

Module 10 - Testing and Verification 355

~

[\Testing & Verification
7

A

» Windows Embedded CE Test Kit
» Other Test Utilities

¢ Lab 10.1 - Using the CETK

» Review

Module 10 - Testing and Verification

356

/

.
[Testing & Verification
A
\
» Windows Embedded CE Test Kit
@ Other Tact Lisilitiac
o Lab 10 * Collection of tools, extensible tests and a
| testautomation harness for testing CE
¢ Reviev pased devices
A

Module 10 - Testing and Verification 357

Windows Embedded CE Test Kit (continued)

Overview
Can be extended with custom test DLLs

Only part of the solution
Custom Apps not covered
Custom IOCTLs and drivers
System InterOp not covered

Microsoft provided automated test harness
Client/Server Architecture

Automated test loading via “Tux”
Actual tests implemented as DLLs loaded by TUX

Common logging Engine “Kato”
DLL exposes C and C++ API for logging to the server

Common peripheral test binaries

The Windows Embedded CE 6.0 Test Kit (CETK) is a tool that you can use to test device drivers that you develop
for the Windows Embedded CE operating system (OS). The CETK incorporates a collection of tests into a
graphical user interface (GUI) harness. The test tools in the CETK support the CPUs and hardware platforms that
Windows Embedded CE supports.

These tools can also be called via the command line for the automated execution of custom test suites. CETK is
used internally at Microsoft to test platforms and drivers

CETK can be setup to be a fast, automated way of running tests and verifying the stability and reliability of a
device and drivers through out a project.

CETK is included with Platform Builder, nothing else to download or purchase and is also available as
standalone download.

The CETK server Ul is launched from the start menu under Programs\Windows Embedded CE Platform Builder
after the in-product tests are added to the catalog of your project.

The device/host connection can be through KITL, ActiveSync, or Sockets. If a connection can’t be established via
the previously mentioned options, then you could copy appropriate test binaries and run manually via
command line or shortcuts. CETK ships with a set of tests that can be used to test third-party drivers for
Windows Embedded CE.

CETK can be used for:
Testing Device Drivers
Application testing
Stress Testing
Performance Testing

Module 10 - Testing and Verification 358

Windows Embedded CE Test Kit (continued)

Overview (continued)

Expandable

Custom tests can be added with the
User-Defined Test Wizard

Can define own test suite

The results of each test are displayed in an easily
readable format via cetkpar.exe

Multiple devices can be managed from a single server
Only one ActiveSync connection is allowed
KITL and sockets allow multiple device connections

Automatic peripheral detection on a device

The CETK client can connect to any machine running the CETK server. Any device can be a CETK client by
downloading clientside.exe to the device.

Module 10 - Testing and Verification 359

[Windows Embedded CE Test Kit (continued)
/

o Architecture

AN

Development Workstation Target

CETest.exe }{){ ClientSide.exe

Log Files

Tux.exe I
N

Kato.dll Test |I
DLLs

_ J

Clientside.exe is used to communicate with the desktop CETK server. It launches TUX.EXE with the command
line options specified from the desktop Server Ul. It is possible to load TUX.EXE in a stand-alone fashion without
the use of the remote server. Microsoft provides a number of TUX test DLLs for testing common drivers and
aspects of the system. You can also create your own TUX test DLLs for custom drivers.

Module 10 - Testing and Verification 360

Windows Embedded CE Test Kit (continued)

CETest.exe

Host PC GUI component
Allows connecting to device
Allows selecting test to execute
Allows changing parameters
Sends testing package to device
Provides some status on test progress

C:\Program Files\Microsoft Platform
Builder\6.00\CEPB\wcetk

Module 10 - Testing and Verification

361

\

7 N\
Windows Embedded CE Test Kit (continued)
. A
7 N
L] CETESt.EXE !J“"MMIE Fadd "'-E'El_
'.'-e-.u_-:u__l'crmr.'nnn View Terti Help
¢ ContEXt menu a”ows) %@guﬁ@m?::?uuedcnmcmlog
Editing the command A~
Edit Command Line
line for the test
MS Bluetooth Test
. Access to results Compi e
. Access to test TR [Retors]
information in the help
Tanget device: WindowsCE [ARMVA)
system Aoy command ine:
@ Temporanly. o this target device
) Pesmanently, to al devices
[ok][Cowel |[Hep |
TR TR TE
@120 OAL Kitl Tests
, ® ;|0A.L‘nmerTzsts
® '__l Other Tests
| o |3 Parallel Post
| [WindowsCE (ARMVAT)
A

The help system provides more information about each test and the corresponding command line parameters.

The exclamation indicates that a test MAY not be available.

Module 10 - Testing and Verification 362

Windows Embedded CE Test Kit (continued)

» Clientside.exe

Device side component that receives test packages from
CETEST and invokes TUX

Invocation Options
Manual
If DNS (name resolution) available:
Clientside.exe /n=<HOST NAME> /p=5555
If DNS is not available:
Clientside.exe /i=<IP Address> /p=5555
Populate device registry
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CETT
WCETK.txt
SERVERNAME=MyWorkstation
PORTNUMBER=5555
AUTORUN=0
DEFAULTSUITE=My Suite

Device Side Software

The device side of CETK is called Clientside.exe. Clientside.exe is a small application that is responsible for
calling to the host computer to establish a connection, device detection, launching tests, and sending back the
results to the host.

Module 10 - Testing and Verification

363

Windows Embedded CE Test Kit (continued)

TUX Execution Engine
TUX.EXE — process that hosts TUX test DLLs
Launched by Clientside.exe

Can run Standalone on the device as well
. Advantages of standalone process
Clientside process separation
Avoids Ul interaction
Allows standalone execution

Module 10 - Testing and Verification

364

~

f\Windows Embedded CE Test Kit (continued)

7

-b

-2

-s filename

-d test_dll

-c parameters
-r seed

-X test_case

-l
-lv

-t address

-h

» Tux Command Line Parameters

Breaks after each Tux DLL loads.

Disables exception handling.

Specifies the Tux suite file to load and execute.
Specifies the Tux DLL to load and execute.
Command line to pass to the Tux DLL.
Specifies the integer starting random seed.

Specifies which test cases to run. You can specify a single test case or a range of test cases, as shown in the
following command line. e.g. tux -x10,12,15-20

Lists the test cases in the Tux DLL specified by the -d parameter.
With greater verbosity, lists the test cases in the Tux DLL specified by the -d parameter.

Specifies the name of the computer running the CETK server. Use -t with no arguments to specify a local
Server,

Runs tests in kernel mode.

Displays the list of command line parameters for Tux.

Module 10 - Testing and Verification

365

Windows Embedded CE Test Kit (continued)

Tux Command Line Parameters (continued)

The following Tux parameters are enabled when Kato.dll is present.

-k address Specifies the name of the computer running the CETK server. Use -k with no arguments to specify a local
server.

-m Logs all Kato output as XML.

-0 Logs all Kato output to the debugger.

-f filename Logs all Kato output to output file filename.

-a Appends data to the output file. Use this parameter with the -f parameter.

The following Tux par ter is enabled when Toolhelp.dll is present.

-z timeout Cancels an existing run of the Tux DLL that is specified by the -d parameter.

Module 10 - Testing and Verification 366

Windows Embedded CE Test Kit (continued)

KATO

Logging library that tux tests can use for reporting test
results

Linking to KATO.dIl and creating a KATO object allows for
routing output to multiple destinations

Module 10 - Testing and Verification 367

Windows Embedded CE Test Kit (continued)

Test Source Code

Platform Builder ships most of the source files to help
identify and fix problems and build custom tests for your
platform

The source files are only installed when you select the
private source tree and agree to the shared source
licensing agreement

Most tests can be rebuilt with no modifications

Located at %_WINCEROOT%\Private\Tests

You can install source code for CETK tests by installing Windows Embedded CE Shared Source from the Setup
wizard for Windows Embedded CE. Test source code will be placed in the Private tree under the Tests
directory.

Module 10 - Testing and Verification 368

Windows Embedded CE Test Kit (continued)

TUX Skeleton

A pre-defined skeleton to help develop new custom tests
that leverages from existing CETK infrastructure

Located at:

C:\Program Files\Microsoft Platform
Builder\6.00\cepb\wcetk\tux\tuxskel

Test Cases are handled by test procedures

Function Table associates test case ID with test procedure

Module 10 - Testing and Verification

369

p
5 Windows Embedded CE Test Kit (continued)

7~

o Log Files

» Stored at:

. ..\Program Files\Microsoft Platform
Builder\6.00\CEPB\WCETK\results

« Sorted by:

. <device name>\<date>\<time>\<test name>.log

[¥oe tae vew
a1 "a T

I Widiows Embecded €2 Teys K - CEfcrarser > —] e) i

Tasrams [et [Dace = I

By AP Tritiog Fabed WindowiCE MV \betapenitan e

</TESTEASE RESULT="PASSED"2

\

Module 10 - Testing and Verification

370

p
kWindows Embedded CE Test Kit (continued)

AN

-

» Log Header

£t Format Virw
<TRETCROUP

3 Rattery AP Testlog - Notepad
B

Heig:

=** SUITE INFORNATION

Suite Reme:
Fuite Desriprion:
Busber of Tests:

Wk (built on the fiy)
nik
Ll

SYSTEN INFORMATION
Bate and Time:

Bavice Hama:

Platforn IB:
Verston Steing:

Frocesser Type:

Allsearion Crasul,
Processer Level:

S0/21/2007 1:31 FH (Sundart

s.00
17
3 "Bindsvs C1°

OX0O0OGALL (2,577} “Sueonghin”
b oA

Prosesser Arehivesvure; OR0O0F

0x00004000 (4,056}
OR00O10000 (65, 5361
OxIFPRIFRT (2,147,483, 647)

=** kevive Processer Hash: Ox00000001
Busber 0f Processses:

L
rity: O00010000 [65,536)
ox0004 h

Frocessor Revision: ox0001 wy

5,296,000 by
9,396,224 by
AE B9, 776 byas

356,358 bytes
11,206 pages

5,157,496 bytes
€02,112 bytes
£4,555, 504 Byses

Module 10 - Testing and Verification

371

p
\LWindows Embedded CE Test Kit (continued)

P

» Log Test Case Results

1 Battery AP Testlog - botepad

Edt Format View Help

BECIN CROUP: FEOTEST.DLL -
STESTCASE IDwl001w

TEST STARTING

GanSystanPowsrSeatuslal
1001
\Batapitert. dil

s
9487
o

BEGIN TEST: “GasSystembowsrStatusBal®, Thevadi=0, Seed-8407

Tey eatling with corzect
Calling CotSystemboverStatusksliz, z, TRUL} E
Calling CetSystemdowacftatustel(s, =, TRUE} succesd!

Line status s AC (O2l)

Main battery flag Gx0l, 1606, 4234367235 (On€E£LEE£E) swoont
Vackup battery flag Oxff. OOV, 425437230 (0zf££80408) secor

48V, 0 mk, svg D ma, svg incerval O, consumad 0 mAN, 280 C,—

Calling GerSysteaPousrStacuskel(s, x, FALIE)

calling GeusystendowerStacusBeiiz, x, FALSE) succeed!
Line stazus 5 AC (Oxd)

Main batzery flag Cr0L, 100%.
Backup battery Clag Ouff, 003, 4Z34367235 (OMfLEIC1L0) secor
4RV, 0 mA, a¥g 0 ma, svy interval O, consumed O mAH, 180 C,
Calling CetSystemPowerStacuskelis, right size ¢ 1, TRON)
Calling Cordystendovartranustet (x, right size ¢ 1. TRON) s
Calling CetSystenPowsrPrausied(x, right size - 1,)
Getlastlrror is B7.

CALLIGG GATIYSTenPoUersTacusirE(x, 0, T}

Getbastlrror is 07,

Calling GetSystemPowerStacusicl (MULL, x, w}

Gatlartirror is 97,

ZP4PETIHE (ORELELEODE) sweond

D TEST: “GetSystemFewsritacusizl®, PASSED, Times0.041

**r TEST COMPLETED

Catdystanboveritatuslal
1001

\batapitest dll

e

arrad
Bam?

acution Tina: O: B4

AN

Module 10 - Testing and Verification

372

p
kWindows Embedded CE Test Kit (continued)

-

© Log Footer

AN

) Battery AP Testlog - Notepsd =

ot iy

=** Tast Name:

o Sead:
*** Thresd Count:
*** Frecuticon Time: 0:00:00.010

=rr TEST COMPLITED

BatteryGetiiteTinainte
1004

= \batapitest.dil

;o Wa

Failea
18693
1

“/TESTEASE RESULTa®FATLED®s
lm EROUP: TIRDEND.DLL

v mEmoRr 1MFO

EE.258.000 bytes
9,396,224 byeas
45,839,776 bytes

356,352 bymas
11,2068 pages

55,197,696 byres
606,208 byzes
£4, 581,488 byres

*** Cumulacive Taw

looww

4

©
.

Execution Time: 0:00:00.085

* Total Tuz Suite Trecuzion Time: 0:00:00.162

= EFU Tdle Tima 1193:08: 47,268
FIESTCROUTS
LETE

Module 10 - Testing and Verification 373

Windows Embedded CE Test Kit (continued)

Result Codes
PASS

The test case ran to completion. All behavior observed by the
test case is valid.

FAIL

The behavior of the tested functionality is not valid.

SKIP
The test case did not run.

ABORT

The test case did not run to completion because an error
occurred. The test case could not verify the tested functionality.

Module 10 - Testing and Verification 374

Windows Embedded CE Test Kit (continued)

Where To Get More Information On CETK

Each test is documented online MSDN and Platform
Builder help system
The documentation includes detailed describes of each test case
and any optional command line parameters that may be used
Windows Embedded Test Blog
http://blogs.msdn.com/testembedded/default.aspx

Module 10 - Testing and Verification 375

p
kWindows Embedded CE Test Kit (continued)
-

AN

» Access to other tools

B Windows Embedded CE Test it IR e

Server Connection View Tests Help
= & Windows Embedded CE Test Kit Server

=Ry <
ollapse
=@ @ Wing P

[Aud| Redetect Peripherals
-r' i ;‘dl Remove Device

Bi-Zy! Bluel ey 4

e c'"’i Device-Side Files...

& ,,:l c'"'| Tools o » Application Verifier
11 s i w CPU Monitor

@ Ly! Ethemet

@) (2 Filesys Resource Consumer

w01 IR Port ‘Windows Embedded CE Stress

" Starts the selected tool.

Module 10 - Testing and Verification

376

~
{

|\ Windows Embedded CE Test Kit (continued)

7

L

» Application Verifier Tool

» Detects memory & resource
leaks in applications

» Uses Shims

Inserts into code path
between calling function and
the intended target function

» Microsoft provides 3 shims
Heap Verifier — finds memory
leaks and heap corruption
Handle Leak Tracker — finds
handle leaks ex. Registry,
event, semaphores, or critical
sections

Shell Verifier — finds GDI &
User defined object leaks

» Can also be used on Device
Drivers

T et s mors 1 b vestind, cick AGd You can e
‘ehect et s on mach pechic rgikcation. Once e
ppicahors oe i Agphcaion pane. o can e
by e g i 1 By g B mapasaly

% Winsboowrs CE Agpbcation YeriLer) Cannectnd s Wendbt=n G Delenit latiam

Thm st e 1 mach sl o periss e e g ann
i emrwnc b o Applates s T copy g bom the.
i, ek Gt Loge. T v Lo b by pinaved o b
parton, chek Vs Expasind Log.

Ten serge

L o Vsl
] e Lo Tk
] st Veter

[t a et g v 1 wecrten,

o

When using Application Verifier, all the functionality and paths on the application should be exercised to

uncover any leaks.

Module 10 - Testing and Verification

377

Windows Embedded CE Test Kit (continued)

CPU Monitor

As an alternative to .
Perfmon, CPU Monitor T —— i U
tool shows CPU and :]
memory usage _,Ill\

CPU Monitor tool can / |'|
run by itself or from the - AN
CETK W|nd0W F”UU-m.mﬂmum Martage

]
Cansave stored datain |||} i
XML i

The CPU Monitor tool shows you the CPU and memory usage of a Windows Embedded CE—based device in the
CPU Monitor for Windows Embedded CE window. The target device sends data through a network connection
to the development workstation. The development workstation logs and displays the data in a graph and a list

in the CPU Monitor for Windows Embedded CE window.

You can run the CPU Monitor tool by itself or you can run the tool from the Windows Embedded CE 6.0 Test Kit
(CETK) window. Prior to running the CPU Monitor tool, you must install the Microsoft .NET Framework on the

development workstation. You can download the .NET Framework from Microsoft Windows Update or from
MSDN, the Microsoft developer program website.

To run the CPU Monitor tool from the CETK window

Add support for the CETK to the Windows Embedded CE operating system (OS) for the target device.
Connect the target device to the CETK.

Click on Tools, Windows Embedded CE Test Kit.

In the CETK window, right-click on the target device from which you want to view CPU and memory usage
information, choose Tools, and then choose CPU Monitor.

The CPU Monitor tool receives data on port 8000 of the development workstation. You cannot change the port

number over which the CPU Monitor tool receives data at this point in time.

You can save the data collected by the CPU Monitor tool in an XML file. The XML file includes the XML schema

and data in XML format. You can use the DataTable object from Microsoft Visual Studio to read the XML file.

Module 10 - Testing and Verification

378

[Windows Embedded CE Test Kit (continued)

/

o Resource Consumer

» Used to load the device
to specific resource
conditions and then run
user and/or stress
scenarios.

2 Resource Consumer

Momery | Processes | CPU |

b

kL Memary Program Memory
B {poes)

Fies S4652378 111035.

In Use By Consumer 0 3: BE.‘

The size in bytes of & page onthis device s [4095

Discornect

/\

Module 10 - Testing and Verification 379

Windows Embedded CE Test Kit (continued)

Windows Embedded CE Stress
Tool

Flexible system for all types
of stress testing scenarios e s

Based on a set of modules Heady toLaunch Stress

that exercise individual ook
components, features, or s toiiiee: N B
applications 7 ks Laureh S0P Suncey Oct 2l Mg s shcn b [

U ks Tt BO0AM Mondey Oct 27 40

The Stress harness controls e
the environment in which = _
the modules operate e L T

Bytes Sare 0 vk it e dbugger on ke

Stress harness monitors the b s
stress run and collects and b s o
reports data ;

Mode Mw | CETF, -

Loggrg Womngs 1] and sbawe =

Can create custom Stress
modules with Stress harness

The Modular Stress harness controls the environment in which the modules operate, you can control:
Module “mix”
Number of concurrent modules
Module lifespan
Modular Stress harness monitors the stress run and collects and reports data:
Individual module test case results
System memory state
Hang detection

Best Practice — “Testing the Test”

As a recommended best practice you may want to run a generic platform with out any customization to assure
your self that the modular stress test runs with out issues. If a stress test fails on it’s own in your environment
then that needs to be fixed as a starting point. After it will run as long as you need it to you can then add in
your customized DLLS and apps. If a failure occurs then, it is likely due to you code not the functionality of the
test in your environment.

Module 10 - Testing and Verification 380

| Testing & Verification

» Other Test Utilities

* Scripting Host Tool
« Cescript.exe, is a ActiveX scripting host. With
the tool, you can run a script independent of a
Web browser on a the target device
* Print Screen Tool
* Prt_scrn.exe takes a screen shot and saves it as
a bitmap file on the target device

Cescript.exe:
http://msdn2.microsoft.com/en-us/library/aa934625.aspx

Cescript.exe supports Microsoft Jscript and Microsoft VBScript programming language.

Prt_scrn.exe:
http://msdn2.microsoft.com/en-us/library/aa934067.aspx

Module 10 - Testing and Verification 381

4 P
5 Testing & Verification)
7 N

e Windows Embedded CE Test Kit
e Other Test Utilities
» Lab 10.1 - Using the CETK
® Rel‘ iesaag
* Lab Goals
1. Run automated tests using the Windows
Embedded CE Test Kit (CETK)

2. Modify the default behavior of the
standard tests

* \/ideo

Module 10 - Testing and Verification 382

4 P
kTesting & Verification)
a4 N\

e Windows Embedded CE Test Kit
e Other Test Utilities

e Lab 10.1 - Using the CETK

* Review

Appendix: Licensing and Developer Resources 383

Windows Embedded Training

Building Solutions with
Windows Embedded CE 6.0 R2

Appendix

Appendix: Licensing and Developer Resources 384

Appendix Introduction

Licensing Overview
CE 6.0 License Types
Licensing Tool
License Agreements
Purchasing Licenses

Developer Resources

Appendix: Licensing and Developer Resources

385

Licensing Overview

Microsoft Embedded Authorized Distributor
Platform Builder Toolkit

Certificate of Authenticity (COA)
Core License

Professional License [P|atform Builder |
Technical Support EvaluanLn
General Licensing Support [Platform Builder

TOOIkith
Sign Customer Production
License Agreement Runtimes

oy

The licensing process begins with getting a free Platform Builder Toolkit Evaluation from an Embedded
Authorized Distributor, this is followed by a purchase of he full version of the Platform Builder Toolkit for $995.
This toolkit allows the OEM the ability to develop, test, and debug the image using the hardware emulator that
is included in the toolkit. The toolkit also includes one product identification number (PID) for testing on
hardware, but cannot be commercially shipped. In order to purchase runtime licenses the OEM must sign an
agreement with Microsoft called the Microsoft OEM Customer License Agreement (CLA). Once in production a
runtime license must be purchased for each individual device.

Platform Builder Evaluation is for 180 days. The OEM must purchase full version in order to create commercial
image.

No need to sign customer license agreement or purchase licensing until product is to be shipped.

Appendix: Licensing and Developer Resources 386

CE 6.0 License Types

Core License
Hard real-time operating system kernel
File system
Networking and communications technologies
Multimedia capabilities
Digital rights management

Application development platform

The Core license is ideal for low-cost devices, such as gateways, entry-level voice over IP (VolP) phones,
industrial automation equipment, and consumer electronic devices such as CD players, digital cameras, and
networked DVD players.

The number of licenses purchased, will determine the price.

Appendix: Licensing and Developer Resources 387

CE 6.0 License Types

Professional License

The Professional run-time license provides all the Core
features plus the following:

Remote Desktop Connection
Windows Messenger
WordPad

Handwriting Recognizer
Internet Explorer

Steaming Media Playback
Windows Media Player

Considering the cost variance between Core and Professional many OEMs evaluate carefully the cost of
developing software features versus licensing additional features from Microsoft.

Appendix: Licensing and Developer Resources

388

Licensing

Run-Time License Assessment
Tool

Used to predict license from
a image file

Contact a Microsoft Embedded
Authorized Distributor

Microsoft OEM Customer
License Agreement (CLA)

1

Tests

Window Comemunty Halp
Platform Badder for CE LD v

| @ Run-Time License Assessment Tool [EST—
(File Help
=4~ B
Custent CE RunTime Image B =
CAWINCEBOMOSDesignd\Tianing0SDesprt Tranng050« [Open

Predicied License(s)

‘Windows Embedded CE 6.0 Profeszional Rure Time Licerse

Required when ready to
begin commercial shipment

Platform Builder Evaluation

Agreement between Il =

Microsoft and the OEM /7
Distributed by Microsoft . .
Ernbedded Authorisad Platform Builder Toolkit

Distributors

Not required for the
purchase of Toolkit
One year agreement; N7
automatically renews for a
second year

N2

Sign Customer License Agreement

Production Runtimes

The licensing process begins with getting a free Platform Builder Toolkit Evaluation from an Embedded
Authorized Distributor, this is followed by a purchase of he full version of the Platform Builder Toolkit for $995.
This toolkit allows the OEM the ability to develop, test, and debug the image using the hardware emulator that
is included in the toolkit. The toolkit also includes one product identification number (PID) for testing on
hardware, but cannot be commercially shipped. In order to purchase runtime licenses the OEM must sign an
agreement with Microsoft called the Microsoft OEM Customer License Agreement (CLA). Once in production a
runtime license must be purchased for each individual device.

Platform Builder Evaluation is for 180 days. The OEM must purchase full version in order to create commercial
image.

No need to sign customer license agreement or purchase licensing until product is to be shipped.

Appendix: Licensing and Developer Resources 389

License Agreement

Microsoft OEM Customer License Agreement (CLA)

Required when OEM is ready to begin commercial
shipment

Agreement between Microsoft and the OEM

Agreement Distributed by Microsoft Embedded
Authorized Distributor

Not required for the purchase of Toolkit

Lasts for one year with and automatically renews for a
second year

When the OEM is ready to purchase runtime licenses, the OEM should contact a Microsoft Embedded
Authorized Distributor in their area and request the Microsoft OEM Customer License Agreement (CLA) and
Additional Licensing Provisions (ALP). The OEM needs to sign and return the CLA to the Authorized Distributor
as well as reviewing and complying with the ALP.

Appendix: Licensing and Developer Resources 390

Developer Resources

e Start Here - http://msdn2.microsoft.com/en-us/embedded/aa731145.aspx

Help System

MSDN

Code Included with Platform Builder

Shared Source

Community Source

Newsgroups

Additional Training for 3rd Parties, Colleges & Universities, Conferences
Blogs, Chats, Webcasts

Developer Interest and Special Interest Groups

Online articles and news providers

.

Microscét Windows Embedded Deveboper Center - Windaus Intemet Explarer T = | ()

L. @ nitpelimsdnl microsoftecemfen-unfembedded default aspy v b x ¢ Search e
i

L L I B I}

§ G0 | @ Mierssoft Windews Embedded Developer Center B o= B o= v hPagew S5 Toolsw

Welcome Randy » ligt Bandy? | Sign In Add LIVE SEARCH 20 your Browser! | United States - English » | Mersoftcom~
den, Windows Embedded Developer Center

Windows Embedded

The family of Windows Embeddad sperating systems enables developers to build next generation 32-bit devicer. Selact from a rangs of
de robust to nd develapment platho i 4o | faotprints. Wirds

Products

Local Help is a great starting point when the troubled waters are encountered. Some users have found that
targeted use of the search engine can decrease their time to problem resolution. As is normally the case with
Visual Studio you can set where you search and can include online resources such as MSDN in your searches.

Platform Builder includes source code samples in the OS Design and OS directories that you can use for a
variety of purposes. Sample code is provided for several types of applications as listed on the slide.

Note: In many cases, sample code is only a starting point for development. That is, some sample code is
complete and ready to build, debug, and test in your OS Design; however, some samples are supplied as
reference only and are incomplete. Sample code has not been tested and is not intended for production use.

A sample design template for network devices that connect to the Internet with a dial-up or broadband
connection, called Gateway. Sample source code, including HTML files, for the gateway design is in the
%_WINCEROOT%\Public\Servers\Oak\Gateway directory. For more information, see Developing a Gateway.

A sample Internet telephony design, called voice over IP (VoIP). Sample source code for the VolIP design is in the
%_WINCEROOT%\Public\DirectX\Oak\VOIP directory. For more information, see Developing an IP Phone.

Sample code files for several drivers are in %_WINCEROOT%\Public\Common\Oak\Drivers\. The sample code in
this directory is intended to be copied to your target configuration for further development.

Sample code for a variety of SOC (system-on-chip) drivers is in %_WINCEROOT%\Platform\Common\Src\SOC.
Additional driver samples can be found in the %_WINCEROOT%\Platform directory.

Sample code for a variety of applications is also available. For example, sample source for Bluetooth is available
in the %_WINCEROOT%\Public\Common\Oak\Drivers\Bluetooth\Sample directory.

Here is the link to search for previous CE webcasts: http://www.microsoft.com/events/AdvSearch.mspx
For some topics you might consider looking at V5 webcasts, the content for some topics, such as test can be
fairly useful. Depending on the topic, some Windows Mobile content can be worth looking at as well.

Chats can be a place to toss a question out:
http://www.microsoft.com/communities/chats/default.mspx

Appendix: Licensing and Developer Resources

391

’/

Developer Resources - Local Help
&

N

@ Welcome to Windows Embedded CE 6.0 - Microsoft Visual Studio 2005 Do... [H[=]E]
Ble Edt Vew Jook Window Help
O ack 2] B A’ @ HowDol ~ 3 Search | Index {3 Contents

Welcome to Wi..bedded CE 6.0 Search - X
Fitered by: URL: mes-help:{MS.VSCC vB0/MS.VSIPCC.vBO/MS. WindowsCE . v0.en/CE_Wh »

II towre Emnbedds JCEI'I e Y

dows Er dded CE 6.0

| to Wind ey 2
CE 6.0 Feedback
9] see also
= Collapse All :I
= Catalog ¢
o | AON ., .
- & Windows Embedded
+
+C ind Embedded CE 6.0 is designed ifically for the
zll professional embedded developer who needs software to bring
4 I » & device to market. CE 6.0 helps a device maker be successful =
@ Contents |]Help Fa... 4 | >

Ready

N\

J

Local Help is a great starting point when the troubled waters are encountered. Some users have found that
targeted use of the search engine can decrease their time to problem resolution. As is normally the case with
Visual Studio you can set where you search and can include online resources such as MSDN in your searches.

Appendix: Licensing and Developer Resources 392

s N
X Help System Layout — Resources for Developers

/_

@ Overview of Windows Embedded CE Development - Microsoft Visual Studio 2005 0... [EIE
» One useful entry T ——
- - 2 ! G HowDal » i ortents [T|Help Favartes o 2
point into the help I LINE.L Lot i
. Fitered by: URL: teg-hoslr: M5 VSC.C.vBO/MS. VSIPCC.vBO/MS. WindowsCE.v60.enJCE_Wekomefhir ~
SvStems IS the [Windows Embedded CE € 7] Windows Embaddad CE 6.0 i
“Win dOWS CE S Wdons Crbodied ¢ g:::::; :nftwindows Embedded CE 7 sang
Platform P @MJ
Development o st Sors = Pl Dot
" Device Bring-Uj Piatform Application Developme
Process” map. You ety " || oovdopmen
can click on all of the pueaniiuran] |l irvmnsow | L_@ =l
- - # Derveloping an Opers o
items in the + Devekong Ak == L:e?m]&
diagram. : il II* J
Mo
=
e [Line R J &
e P

Another place to start in help is the Windows Embedded CE OS architecture diagram.

Appendix: Licensing and Developer Resources 393

4 N
X Help System Layout — Resources for Developers

N\

» This course covered material that is located in the
“Developing an Operating System” section.

@ Developing an Operating System - Microsoft Visual Studio 2005 Do:mwnt...uaﬂ
fle Edt View Jools Window Help

O sack [#] @ A’ @HowDol - Q search [Index & Contents _5
Developing an Operating System = X
Fitered by: URL: ms-help:f{M3. VSCC.vB0/MS. VSIPCC.vE =
| windows Embedded CE 6.0 2| Windovs embadded

= Windows Embedded CE 6.0 af [REE 0 "

+1 Welcome to Windows Embedded CE 6.0 —| Developing an & seng

+ Bringing Up a Hardware Platform Operating Feedback

+ Developing a Device Driver System

= Developing an Operating System = Collapse all
+ Developing an O5 Design = 2 ﬂ
+ Platform Bulder User's Guide = In This Section

+ Run-Time Image Development Process

Il
+ Platform Builder Directory Structure X ”? .n it o
+ Utilkies lCcmleur;s mf:rmallmn _ahnut :;usw
3 . o create and customize an
+ Developing an Application design that you can use to
+ Diagnostics and Debugging for Mobdle and Embed create a run-time image.
+ Windows Embedded CE Test Kit
+ Developing a Target Davice —1| Elatform Builder User's Guide
+ Compders for Microprocessors ﬂ Contains information about how
D e e e e e to use the Platform Builder -]
« | i bkt et agin

@ Contents || 3 Index | T]Help Favorites

For those topics not covered in this course, the help systems is a great place to start. For example, there are
additional useful utilities for such things as creating installation CAB files that are covered in the Utilities section
of the help.

Appendix: Licensing and Developer Resources 394

Developer Resources — Source Code

Platform Builder includes source code in each of the
following directories:

%_WINCEROOT%\Others
%_WINCEROOT%\Public
% _WINCEROOT%\Private

%_WINCEROOT%\Platform
100% Kernel
FileSystem and Storage Manager
SOAP and uPNP protocol implementations

Platform Builder includes source code samples in the OS design and OS directories that you can use for a
variety of purposes. Sample code is provided for several types of applications as listed on the slide.

Note: In many cases, sample code is only a starting point for development. That is, some sample code is
complete and ready to build, debug, and test in your OS design; however, some samples are supplied as
reference only and are incomplete. Sample code has not been tested and is not intended for production use.

A sample design template for network devices that connect to the Internet with a dial-up or broadband
connection, called Gateway. Sample source code, including HTML files, for the gateway design is in the
%_WINCEROOT%\Public\Servers\Oak\Gateway directory. For more information, see Developing a Gateway.

A sample Internet telephony design, called voice over IP (VoIP). Sample source code for the VolIP design is in the
%_WINCEROOT%\Public\DirectX\Oak\VOIP directory. For more information, see Developing an IP Phone.

Sample code files for several drivers are in %_WINCEROOT%\Public\Common\Oak\Drivers\. The sample code in
this directory is intended to be copied to your target configuration for further development.

Sample code for a variety of SOC (system-on-chip) drivers is in %_WINCEROOT%\Platform\Common\Src\SOC.
Additional driver samples can be found in the %_WINCEROOT%\Platform directory.

Sample code for a variety of applications is also available. For example, sample source for Bluetooth is available
in the %_WINCEROOT%\Public\Common\Oak\Drivers\Bluetooth\Sample directory.

Appendix: Licensing and Developer Resources

395

s

5 Developer Resources - MSDN

7

e

A Windows CE - Microsoft Internet Explorer
Fle Edt Vew Favorites Tools Heb &

Qe - © - %] B O] Pt Sfrroms @ 3

A-ﬂdress-[.'ﬂ o rosoft.c Vi —— ,,;....:]. Links *

Sit

Map

MSDN Home How to B

| Developer Centers | Library | Downloads |

Search for Welcome to the MSDN Library
MSDMN Home > MSDM Library > Mobile and
MSOM Library ;I Search Embedded Davelopment > Embadded

ratin rm Development

- - synctoc P X

Windows CE

Microsoft® Windows® CE is an open,

scalable, 32-bit operating system that is

designed to meet the needs of a broad

range of intelligent devices, from

enterprise tools such as industrial

= controllers, communications hubs, and

[windows CE 5.0 point-of-sale terminals to consumer
products such as cameras, telephones,

[# windnue ©F MFT
..‘_I.—.-r snd harma antadtsinrmant davicar

&) windows CE [Intemet

welcome to the MSDN Library =
[Development Tools and Langus
[Maobile and Embedded Develop
[E .MET Compact Framework
B Embedded Operating Systen
B[windows Ce|

RN

You can integrate MSDN into your help system or access it through an internet browser.

Using the advanced search options can be one way to locate information on MSDN.

Appendix: Licensing and Developer Resources

396

-

kDeweloper Resources — MSDN Newsgroups

7

X Discussions in windows

oft Internet £

He gk yew Fgomes ook tep
o D X B POsewar Srreees @3- 1k 5
suiess |] Wetpeffmacmacrosoft comiravesoroupsidef ot aspe dgmricromolt,publi vedowrsce embadded

Developer Centers | Library | Downloads | How to Buy
MEDN Ham > MEDN Nawsgroups

goy[savees Eiep &

Subscribers | Worldwide

(@Simnin] | &1 ve
windowsen.ambadded o @

New to discussons? Check out the Gatting Startad Halp fapi.

Be sure to sign in (chick the Sign in button above) for the best
experence you are signed in, you can ask questions,
answer questions others have asked, sign up for e-mal

ons for ing threads, and rate posts in discussion

Discussions In wind PR e
Search Fari Tni
MSDN Newsgroups .
Component Development » L Haww I
Data Access | . 2= Fy
¥ Stream Writer Mot Writing neslines in Win... -~
Entarpriss Developmert » | = S 231974008
Graphics and Multimedia ¥ | 5 ANN: Windows CF Live Chat Tamorroe!
Messaging sad + 1 past 12/39/2006
Collaboration 4] Windowrs € 6.0 Suows ssvor whan crestin...
1 past 12192006
Mobile and Embedded 3
Development + data sbort problem
2 posts 12/18/2008
NET Developmant ¥l m owesa g
Networking and Directory » 3 posts 121292008
Services 51 can v change the lecation of caleg.cg??
Office Selutions » 1 post 12/18/2006
Development | NTP time synch on CE 3.0
2 posts 11872006
I T
VHOMTools BLANGUAINS 1| | o ch 5 el dammiond couses B30 durts..
ek Dovsieprng % 2 pasts 12/20/2008
Windaws . s
& 4 posts 12/10/2006
»
AIC Wb Ssrvicws 5 standard XP drivers in WinCE, Standard x... 0
MSDN Subscriptions 0 2 ports 121182006
MSDN Magazine » & TS MASECT Provider and EVE4
Newsgroup Resources # prvis MALM08.
1 b ssage) @
Fexpand Al | Pager | 1_«»@ w

Groups.

Ceennnnns T begin reading discussions, click a subject that
interests you. This expands the discussion thread to show alf
the pasts, and allows you to read the mossage body hare in the
MEStage pard.

o)

0 trenret

e

http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.windowsce.embedded

Appendix: Licensing and Developer Resources 397

Developer Resources - Training

Formats Include: Classroom, Online, Webcasts
Colleges and University

Third party private partners provide classroom training on
topics such as:

Board Support Packages
Device Driver Development
Testing Best Practices

C++

.NET, Web Services, XML and other general application
development topics

Appendix: Licensing and Developer Resources

398

P
Developer Resources
L

— Webcasts and Chats

/’_

A Find Events and Webcasts - Microsoft Internet Explorer !EE
Ele Edt Vew Favorkes Jook Melp Ll
Qo - Q- [x] B @) Psewcn Yioravres @ (-5 - [)7
Address [£] hetp:ffwww.micrasoft - =] EJGo |Links »

Events and Webcasts
Events & Webcasts Home

| Find Events and Webcasts
Webcast Calendar

Browse by Type
In-Person Events
Live Webcasts
On-Demand Webcasts
Virtual Labs
Information For
IT Professionals
Davalopars
Business Professionals
Small Businesses
IT Executives
Business Executives

Resources

2|

i
Microsoft

Quick Links » | Home | Worldwide

Search Microsoft.corn for:

Find Events and Wehcasts

Find events and webcasts by using one or more of the options b
results, please try a different combination of options. Tou can a
demand webcasts and our list of monthly archived webcasts, or
1D,

Search for events and webcasts using one or more of the f

Select Audience Al Ausdiences >

Select a Product ‘Windows CE

Select an Event Type " In-Person Events

" Live Webcasts

® on-Demand Webcasts
| _'f_l

£] Done

B Internet

N

AN

J

Here is the link to search for previous CE webcasts: http://www.microsoft.com/events/AdvSearch.mspx

For some topics you might consider looking at V5 webcasts, the content for some topics, such as test can be

fairly useful. Depending on the topic, some Windows Mobile content can be worth looking at as well.

Chats can be a place to toss a question out:

http://www.microsoft.com/communities/chats/default.mspx

Appendix: Licensing and Developer Resources 399

p
WE-DIG
.

e

Windows Embedded
Developers Interest Group

We Dig NET...Oo you?

A </ WE
<CAN_YOU_DI

& &

2,

L

e www.we-dig.org

\, /

Appendix: Licensing and Developer Resources

400

’/

Developer Resources - Magazines
L

» Windows for Devices

http://www.windowsfordevices.com

» Real Time Computing - RTC
http://www.rtcmagazine.com/

» Pocket PC Mag
http://www.pocketpcmag.com/

» Microsoft Mobiles
http://msmobiles.com/

N\

Appendix: Licensing and Developer Resources

401

Developer Resources - Books

Professional Microsoft Windows
Embedded CE 6.0
Samuel Phung

Windows
Embedded CE 6.0

Fundamentals Windows Embedded CE 6.0
f& Fundamentals

Stanislav Pavlov and Pavel
B Belevsky

Programming Windows
CE 6.0 Developer
Reference

Doug Boling

Appendix: Licensing and Developer Resources

402

s

i Developer Resources - Blogs

7

Windows Embedded

ded Standard
ml’l.c-n. ation Development
MSON

W

dded
HavRe

More CE than you can
shake a stuck a

Tags

Application

Windows Internet Explorer

] l42] K] [hats thog. [le-

B-8- M'_'J'Zm':)m-_

ATOM 1.0

Update from Canalys (and ancther interesting blog for you to
tag/read)

The Windows Embadded keynota at Canalys (GPS Navigation Forum event, in Budapast,
Europe] was yesterday, Bya Bukshteyn (Senior Director, Marketing) presented the keynote,
with Qlecer floch presenting the demos - Clnvier demonstrated the developer experience
using Windovrs Embedded HavReady 2009, showing how to configure 8n opersting system
image, and then showed the integration of the DUN Blustoath profile (using a developer UL,

not something you would actually ship on a device], and Live Search far Devices.

Amnﬂnvnn!!h!kemsp nﬂd shotos from the event can be found on the Disc e
g log which Oinder pointed me at on e-mail this mornm.; {rd
ot seen the blog before - but it hooks like there is some interesting contert up there).

1 hear that Oliver is planning on recoding the demos, <o we can get them publiched up on
MSDHN Channel 9, or somd such place.

- Mike

AN

Appendix: Licensing and Developer Resources

403

’f

Developer Resources - Blogs
o

http://blogs.

» CE Embedded Team

msdn.

com/ce base/

» Mike Hall
http://blogs.

msdn.

com/mikehall/

o Test Team
http://blogs.

msdn.

com/testembedded/

» Emulator
http://blogs.

msdn.

com/emulator/

/\

Appendix: Licensing and Developer Resources 404

4 N
. Developer Resources — Industry Events
vy
o N
» Tech Ed

www.microsoft.com/events/teched2006/worldwide.mspx

» ESC — Microsoft Embedded Systems Conference

» WinHec

www.microsoft.com/whde/winhec/default.mspx

Appendix: Licensing and Developer Resources

405

[Building Solutions with Windows Embedded CE 6.0 R2

=~

S

7

\

» Thanks for Attending!

N

Please take time to complete your evaluation and receive your class certificate.

