
Module 0 - Introduction 1

Welcome to the “Building Solutions Using Windows Embedded CE 6.0 R2” training course.

Module 0 - Introduction 2

Module 0 - Introduction 3

Module 0 - Introduction 4

Module 0: Course Preliminaries 5

Module 0: Course Preliminaries 6

Module 0: Course Preliminaries 7

Module 0: Course Preliminaries 8

Module 0: Course Preliminaries 9

Module 0: Course Preliminaries 10

Module 0: Course Preliminaries 11

SDIO Hx –
•Only SDIO software stack offering multiple-slot support with a single host controller chip decreasing device
size and cost.
•Supports 802.11g Wi-Fi throughput rates to 15 Mbps on select applications processors. Ideal for GPS,
streaming media, VoIP, and other applications requiring high data throughput rates.
•Accelerates time to market leveraging BSQUARE’s industry-standard SDIO software stack including support
for SD, SDIO and MMC specifications.

Module 0 - Introduction 12

Module 0 - Introduction 13

Module 0 - Introduction 14

Module 0 - Introduction 15

Windows Embedded CE SKUs include Core, Professional, Windows Embedded CE 6.0 for Handheld GPS, and
Windows Embedded CE 6.0 for Set Top Box.

Windows Mobile and Windows Automotive are based on Windows Embedded CE.

Windows XP Embedded, Windows Embedded for Point of Service, Windows Vista Business for Embedded
Systems, and Windows Vista Ultimate for Embedded Systems are based on desktop operating systems.

Generally the Microsoft offering’s are viewed in terms of more or less functionality. This must be kept in
perspective of the needs of the device running the OS.
(e.g. If the needs dictate an ARM processor, running real-time, with less that 16MB of memory, then you can
see that Windows Embedded CE is really the OS with the features required.)

Previous versions include the many versions of Windows Embedded CE and the predecessor to XP Embedded;
NT Embedded.

http://www.microsoft.com/embedded

.NET Micro Framework landing page:
http://msdn2.microsoft.com/en-us/embedded/bb267253.aspx

The .NET Micro Framework can have a footprint as little as 250-500KB with support for managed code.

In addition to the bullets listed here a couple other things that could be noted include the fact that the .NET
Micro Framework does not require and MMU, it is not designed to be real-time, and that native code is only
supported though interop.

Module 0 - Introduction 16

Windows Embedded CE landing page:
http://msdn2.microsoft.com/en-us/embedded/aa731407.aspx

Module 0 - Introduction 17

Windows Embedded for Point of Service provides Plug-n-Play functionality for many retail device peripherals. It
is build on top of XP Embedded and provides a quicker time to market for devices used in point of service
applications.

Windows Embedded Standard landing page:
http://msdn2.microsoft.com/en-us/embedded/aa731409.aspx

Windows Embedded for Point of Service:
http://msdn2.microsoft.com/en-us/embedded/aa714298.aspx

Module 0 - Introduction 18

Module 0 - Introduction 19

Module 0 - Introduction 20

Module 0 - Introduction 21

Module 0 - Introduction 22

Module 1 - OS Overview 23

Module 1 - OS Overview 24

Module 1 - OS Overview 25

Module 1 - OS Overview 26

Windows Embedded CE is designed for small footprint embedded devices, and is designed to allow customers
to get to the market quickly.

Real-time performance:
http://msdn2.microsoft.com/en-us/library/aa908633.aspx

Since the executables use PE format, tools that operate on PE files, such as Dumpbin and Depends will work on
Windows Embedded CE executable files.

Module 1 - OS Overview 27

http://www.microsoft.com/windows/embedded/eval/wince/components.mspx

Module 1 - OS Overview 28

Supported processors:
http://msdn2.microsoft.com/en-us/embedded/aa714536.aspx

With the support for ARM, SH4, MIPS, and x86 architectures, the total number of processors supported is quite
high; some with direct support out of the box, others with support from chip manufacturers or 3rd parties and
still some that would require significant development.

Module 1 - OS Overview 29

Visual Studio landing page:
http://msdn2.microsoft.com/en-us/vstudio/default.aspx

Module 1 - OS Overview 30

Access to Windows Embedded CE source code helps developers debug, test, and make changes to an OS image.
It also allows you to modify the operating system software to create differentiated features while maintaining
control over your intellectual property.

Info on Shared Source:
http://msdn2.microsoft.com/en-us/embedded/aa714518.aspx

Community Source Projects include:
Open SSH
MPEG-2 Demux
Wi-Fi Driver
Phidgets
Bluetooth Wrapper
Layered Services Providers
Gumstix BSP
USB Webcam

Links for these projects can be found through the shared source info link above.

Module 1 - OS Overview 31

Module 1 - OS Overview 32

Module 1 - OS Overview 33

Module 1 - OS Overview 34

Here is a link to a detailed visual timeline:
http://upload.wikimedia.org/wikipedia/commons/c/cb/Windows_CE_Timeline.png

What does CE stand for:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q166915

Windows Embedded CE started as a command line build only product and in mid 2.x releases was provided a
GUI build environment all its own. For version 3.0 there was a major kernel rewrite from the ground up to
improve real-time performance. Version 4.x saw the integration of the compact framework as well as many
build environment improvements. Version 6.0 was the first version that saw the integration of the build
environment into Visual Studio as well as major changes to the memory architecture to provide applications
with increased memory space.

Module 1 - OS Overview 35

Support for Remote Desktop Protocol (RDP) 6.0. RDP 6.0 includes support for Secure Sockets Layer/Transport
Layer Security (SSL/TLS), Network Level Authentication, Server Authentication, and 32-bit color graphics.
Support for Microsoft Web Services on Devices (WSDAPI), which is an unmanaged code implementation of the
Devices Profile for Web Services (DPWS) protocol standard.
Support for Video over IP telephony calls.
Additional Voice over IP (VoIP) functionality, including a VoIP boot loader application and resources for QVGA
landscape mode and QVGA portrait mode user interfaces.
Support for the Pocket Outlook Object Model (POOM) and ActiveSync in the VoIP Home Screen and VoIP
Contacts applications.
New sample board support packages (BSPs).
Support for Auto Proxy Configuration Support in Internet Explorer 6 for Windows Embedded CE.
New driver that supports USB CCID Smart Card readers.
Support for Windows Media Player OLE Control Extension (OCX) 7.
New componentized flash driver and new partition driver for the management of flash memory.
Improved Secure Digital (SD) bus driver that supports SDHC specification 2.00 functionality, for example Secure
Digital High-Capacity (SDHC) cards.
Sample Serial ATA driver, extended from the ATAPI driver, which supports the Promise PDC40518 SATA card.
Support for pluggable third-party font drivers.
Support for Extended File Allocation Table (ExFAT) and FAT32 on the x86 BIOS Loader, which provides access
beyond 2 gigabytes (GB) of hard disk space.

Module 1 - OS Overview 36

Module 2 - The Tools 37

Module 2 - The Tools 38

Module 2 - The Tools 39

Module 2 - The Tools 40

Starting with the initial release of Windows Embedded CE 6.0, the build tools are run from within the Visual
Studio 2005 environment.
Installation should be completed in the order above. Note that R2 contains all updates through August 2007;
any updates after the August 2007 updates will need to be installed following this installation.

http://blogs.msdn.com/dcook/archive/2007/05/13/does-pb-5-0-work-side-by-side-with-pb-6-0.aspx

.

Module 2 - The Tools 41

Link to terminology in Windows Embedded CE:
http://msdn2.microsoft.com/en-us/library/aa924102.aspx

Link to terminology in Windows Embedded CE:
http://msdn2.microsoft.com/en-us/library/aa924102.aspx

Module 2 - The Tools 42

Module 2 - The Tools 43

Module 2 - The Tools 44

Module 2 - The Tools 45

Pre-Sysgen Build
This is the feature build phase and it compiles the source code that is provided by Microsoft in the
various Public subdirectories (_DEPTREES). Microsoft provides the binaries for these components as
well, so there is no need to compile the source code unless it has been changed. You should not
modify the source code in these trees, so there should be no reason to run this step. This step is only
exposed in the Build menu as part of the Advanced Build Commands.

System Generation and Post Sysgen Build
Filters modules and components based on OS Design settings. Then build the BSP.

Build Release – BUILDREL
Copies files into the Flat Release Directory

Make Image
Generates the OS Run-Time Image from the files in the Release Directory

This build process will be discussed in length throughout the course.

Module 2 - The Tools 46

Module 2 - The Tools 47

Module 2 - The Tools 48

The Debug Menu provides access to many windows for debugging purposes, including those shown here.

Module 2 - The Tools 49

Module 2 - The Tools 50

In addition to the run dialog on the device the command line shell maybe used if it is built in.

Module 2 - The Tools 51

Module 2 - The Tools 52

Module 2 - The Tools 53

Note that environment variables are used extensively for paths.

During the installation process a number of folders are “installed”. There are also folders that are created
dynamically as needed.

Module 2 - The Tools 54

Module 2 - The Tools 55

Module 2 - The Tools 56

Module 2 - The Tools 57

Module 2 - The Tools 58

Module 2 - The Tools 59

Module 2 - The Tools 60

Module 2 - The Tools 61

Module 2 - The Tools 62

Module 3 - OS Internals 63

Module 3 - OS Internals 64

Module 3 - OS Internals 65

Module 3 - OS Internals 66

http://msdn2.microsoft.com/en-us/library/aa924061.aspx

This diagram shows the overall system architecture. Fundamentally an OS that support a single process in
Kernel Mode with essentially an unlimited number of processes, 32K, in user mode. Process can have an
unlimited number of threads, which are the actual units of execution. Drivers can be either user mode or kernel
mode.

The blocks are color coded as a reference to who typically provides the major functionality within each block.

The OAL is the abstraction layer for the kernel for your specific hardware. It contains, among other things, the
interface to the system timer hardware. The drivers next to the OAL here, are the kernel mode drivers in the
system. These drivers will provide interface to specific pieces of hardware or hardware functionality in the
system. Since these drivers are kernel mode drivers that do not need any special handling to gain access to
kernel space or kernel functionality.

• kernel.dll supplies core kernel functionality
• devmgr.dll supplies the management services for drivers
• gwes.dll provides the graphics, windows, and event subsystem
• filesys.dll supplies the file system interface.
• fsdmgr.dll provides the management of file system drivers, networking DLLs,
• Kcoredll.dll provides the primary WIN32 API interface for components running in kernel mode.

In user mode, there are a number of API modules (DLLs) that provide the interfaces necessary to interface to
the kernel and/or provide the basic WIN32 functionality for components running in user mode. Additionally,
there are a number of processes running in user mode that supply certain functionality for the system.
Udevice.exe is a hosting process for user mode drivers to provide the support needed to run drivers from user
mode. There may be, and often are multiple copies of Udevice.exe running in the system. ServicesD.exe
provides the hosting process for services. Next we have the shell and other applications which can vary
dramatically from device to device.

Module 3 - OS Internals 67

Virtual Memory:
http://msdn2.microsoft.com/en-us/library/bb202734.aspx

The Windows Embedded CE virtual memory model divides the memory into both kernel space and user space.
Kernel space is the upper 2G while user space is the lower 2G. User space is per process space, where as kernel
space is single instance.

Module 3 - OS Internals 68

Virtual Memory:
http://msdn2.microsoft.com/en-us/library/bb202734.aspx

Now we are looking at the area below the 2G boundary. This is considered User space. Even though we
consider the complete lower 2G to be per process space there are portions that are actually shared between
processes. At the 1G boundary we load all user mode dlls. These dlls are single instanced from a code point of
view. There is up to 512MB of space available for the loading of these dlls. At the 1.5G boundary we have a
256MB area for memory mapped files. Above that, at the upper 256MB, of the lower 2G space, we have the
shared heap area.

Module 3 - OS Internals 69

Virtual Memory:
http://msdn2.microsoft.com/en-us/library/bb202734.aspx

This diagram shows the layout of the kernel memory space with 6 major areas.
The static mapped address space provide a 512MB mapping for both cached and uncached access to up to
512MB of virtual memory space. Above that we have 128MB of kernel ROM dll space, check out addresses of
modules in this space as you are performing the various labs. Above that, starting at address C8000000 we
have the 128MB RAM based object store. As we will see a little later this area holds the registry, a file system,
and a database. Finally, above that we have another 512MB that is used as general purpose memory for the
kernel. Depending on the processor architecture the system will take advantage of 256MB or 512MB. At the
top of the 512MB is the system trap area for relocated interrupt vectors.

Module 3 - OS Internals 70

There are many tools in Windows Embedded CE that provides some aspect of memory related functionality.
Toolhelp exposes:
CloseToolhelp32Snapshot - Closes a handle to a snapshot.
CreateToolhelp32Snapshot - Takes a snapshot of the processes, heaps, modules, and threads used by the
processes.
Heap32First - Retrieves information about the first block of a heap allocated by a process.
Heap32ListFirst - Retrieves information about the first heap allocated by a specified process.
Heap32ListNext - Retrieves information about the next heap allocated by a process.
Heap32Next - Retrieves information about the next block of a heap allocated by a process.
Module32First - Retrieves information about the first module associated with a process.
Module32Next - Retrieves information about the next module associated with a process or thread.
Process32First - Retrieves information about the first process encountered in a system snapshot.
Process32Next - Retrieves information about the next process recorded in a system snapshot.
Thread32First - Retrieves information about the first thread of a process encountered in a system snapshot.
Thread32Next - Retrieves information about the next thread of a process encountered in the system memory
snapshot.
Toolhelp32ReadProcessMemory - Copies memory allocated to another process into an application-supplied
buffer.

Module 3 - OS Internals 71

The process viewer is shown here. While its primary use is more process and thread related; it does provide
some memory related information. You will notice the base address for processes as well as the base address
for modules within the system. Note that all Windows Embedded CE processes have a load address of 0x10000.
That is with one exception; nk.exe which is the only process that runs in kernel space.

Module 3 - OS Internals 72

Heaps:
http://msdn2.microsoft.com/en-us/library/bb202725.aspx

The heap walker allows us to, as the name says, walk the heap for the active processes within the system.
There are three primary windows within heap walker. First the process list window, then the heap list window a
selected process and finally a dump windows for details of an item selected from the heap list.

Module 3 - OS Internals 73

Kernel Tracker allows viewing of many events in the system. While not it primary use it does allow viewing heap
related events as well.

Module 3 - OS Internals 74

Module 3 - OS Internals 75

Info on gi command:
http://msdn2.microsoft.com/en-us/library/aa935268.aspx

This tool provides another way to access the module’s base addresses.

Module 3 - OS Internals 76

Info on mi command:
http://msdn2.microsoft.com/en-us/library/aa935268.aspx

Module 3 - OS Internals 77

Info on mi command:
http://msdn2.microsoft.com/en-us/library/aa935268.aspx

Module 3 - OS Internals 78

Module 3 - OS Internals 79

Module 3 - OS Internals 80

Processes:
http://msdn2.microsoft.com/en-us/library/aa908952.aspx

Module 3 - OS Internals 81

Threads:
http://msdn2.microsoft.com/en-us/library/aa915094.aspx

Module 3 - OS Internals 82

Module 3: Operating System Internals 83

Windows Embedded CE 6.0 uses a priority-based time-slice algorithm to schedule the execution of threads.

Threads with the same priority run in a round-robin fashion: when a thread stops running, all other threads of
the same priority run before the original thread can continue. Threads at a lower priority run only after all
threads with a higher priority finish or are blocked. If one thread is running and a thread of a higher priority is
unblocked, the lower-priority thread is immediately suspended and the higher priority thread is scheduled.

A thread gets to run for set length of time, called a quantum
Typically 100 milliseconds
A quantum of 0 means the quantum never runs out
The thread can run until blocked or interrupted
OEMs can specify a different quantum.

A Thread runs until—
Its quantum runs out
It is interrupted by a higher priority thread
Its blocked by a resource contention, such as access to a critical section or a mutex

After a thread has used up its quantum, and if any thread with the same priority is ready to run, the current
thread is suspended and another thread is scheduled to run. The only exception to this is if a thread is a "run to
completion" thread, which means that the thread quantum is equal to 0. Threads with a quantum set to 0 will
never expire and will never be preempted by threads of the same priority. Threads that have a quantum set to
0 cannot be preempted except by a higher priority thread or an interrupt service routine (ISR).

Priorities:
http://msdn2.microsoft.com/en-us/library/bb202761.aspx
While this table shows the overall strategy for priorities in the system, taking the time to walk through the
priorities using a tool such as process viewer, looking at the threads of each process, can provide a better
understanding. While having a understanding of the priority of threads within a given process is important;
often times it is just as important to understand the priorities relative to other threads within the system.

Module 3 - OS Internals 84

Module 0 - Introduction 85

Priority inversion:
http://msdn2.microsoft.com/en-us/library/aa915356.aspx
One way to avoid the need for priority inversion is to understand the priority of the module that is being
developed in reference to the other threads in the system that it will be interacting with.

Module 3 - OS Internals 86

87

There are two primary architectural choices for an OS to handle Priority inversion in a system: Single Level and
Fully Nested. In the Fully Nested Mode the OS will walk through all threads blocked and keep boosting each one
until the high priority thread can run. This prevents an entire class of deadlocks. Unfortunately it also means an
O(n) operation with pre-emption turned off while the scheduler figures out how to get everything unblocked to
keep things going. This is a major problem for real-time systems that need deterministic response times.
In order to support hard real-time systems Windows CE V3.0 and later switched to using a Single Level handling
of priority inversion. That is the OS will boost only one thread to release a block. It is therefore the
responsibility of the developer to structure code such that deadlocks are avoided.

Module 3 - OS Internals 88

Module 3 - OS Internals 89

Module 3 - OS Internals 90

Module 3 - OS Internals 91

Module 3 - OS Internals 92

Module 3 - OS Internals 93

Very often when using multiple threads in a system there is a need for some type of synchronization. Here we
will explore the synchronization objects available within Windows Embedded CE.

Critical Sections:
http://msdn2.microsoft.com/en-us/library/aa910712.aspx
One example of critical section use would be a driver allows multiple threads access to a hardware register that
requires a sequence of writes.

Module 3 - OS Internals 94

Mutexes:
http://msdn2.microsoft.com/en-us/library/bb202813.aspx

MsgWaitForMultipleObjects(Ex) should be used in place of the other wait functions for threads that need to
process windows messages as well.

DuplicateHandle() allows for creating a handle that can be used for the same event in another process space.
All types of handles can be duplicated with Windows Embedded CE 6.0.

Module 3 - OS Internals 95

Semaphores:
http://msdn2.microsoft.com/en-us/library/aa909242.aspx

Module 3 - OS Internals 96

Events:
http://msdn2.microsoft.com/en-us/library/aa915075.aspx

Module 3 - OS Internals 97

Events:
http://msdn2.microsoft.com/en-us/library/aa915075.aspx
This table provides a quick reference to the options for events. As we said there are two types of events, auto
and manual. There are also two methods for triggering events, PulseEvent and SetEvent.

Module 3 - OS Internals 98

Interlocked functions:
http://msdn2.microsoft.com/en-us/library/aa911383.aspx

Module 3 - OS Internals 99

Interlocked functions:
http://msdn2.microsoft.com/en-us/library/aa911383.aspx

Module 3 - OS Internals 100

http://msdn2.microsoft.com/en-us/library/aa909023.aspx

Module 3 - OS Internals 101

Module 3 - OS Internals 102

Module 3 - OS Internals 103

Interrupts landing page:
http://msdn2.microsoft.com/en-us/library/bb201995.aspx

Module 3: Operating System Internals 104

Real-time applications use interrupts to respond to external events in a timely manner. To do this, Windows
Embedded CE 6.0 breaks interrupt processing into two steps: an interrupt service routine (ISR) and an interrupt
service thread (IST). The ISR runs immediately to identify and mask the interrupt, and perform any high priority
tasks. The corresponding IST is a normal system thread (although typically of high priority) and can perform the
bulk of the handling that is not time critical. This two stage model allows the operating system to maximize the
amount of time the system is able to respond to other high priority interrupts.

The kernel is able to handle a total of 64 interrupts from external sources, some of which are predefined (e.g.
system timer interrupt, real time clock etc). Devices that have more than 64 interrupt sources that need to be
exposed (rare) must implement a mechanism to share interrupt identifiers. Typically this is done by
multiplexing related interrupts together in the ISR, and demultiplexing them in the IST.

Module 3: Operating System Internals 105

Real-time applications use interrupts to respond to external events in a timely manner. To do this, Windows
Embedded CE 6.0 breaks interrupt processing into two steps: an interrupt service routine (ISR) and an interrupt
service thread (IST). The ISR runs immediately to identify and mask the interrupt, and perform any high priority
tasks. The corresponding IST is a normal system thread (although typically of high priority) and can perform the
bulk of the handling that is not time critical. This two stage model allows the operating system to minimize the
amount of time the system is able to respond to other high priority interrupts.

Interrupt processing:
http://msdn2.microsoft.com/en-us/library/aa930251.aspx

Module 3: Operating System Internals 106

Module 3: Operating System Internals 107

An interrupt service routine (ISR) is code that handles interrupt requests (IRQs) on your target device. The ISR is
responsible for identifying an interrupt source, masking it, and returning a unique identifier to the Windows
Embedded CE 6.0 kernel. The ISR can optionally perform other tasks that are time critical, but should be
limited to those tasks that are absolutely necessary. Time spent in the ISR is time that other IRQs of lower
priority are not able to be serviced.

CPU architectures that have more than one hardware IRQ require the developer to register ISR routines for
each IRQ source. This is done at system initialization before interrupts are enabled. An IRQ can have only one
ISR, but the same ISR can be registered for more than one IRQ. CPU architectures that have only a single IRQ
source (ARM) do not need to register an ISR with the kernel.

ISR landing page:
http://msdn2.microsoft.com/en-us/library/aa930802.aspx

Module 3: Operating System Internals 108

The interrupt service thread (IST) is a device driver thread that does most of the interrupt processing. The
device driver associates a synchronization event object with the desired interrupt identifier and registers them
with the kernel during initialization. The IST thread in the driver then waits for the event object to be signaled
by the kernel, indicating that the corresponding interrupt identifier was returned by an ISR. The IST thread
performs whatever processing is necessary to complete the interrupt processing, then notifies the kernel and
waits for the event to be signaled again.

The IST is just a thread running inside of a driver. It typically runs at above normal priority based on the needs
of the device and other system requirements. The IST is different from other threads that might be running
inside the driver only in that it is handling a particular synchronization event that is registered in the kernel with
an interrupt identifier.

IST processing:
http://msdn2.microsoft.com/en-us/library/aa930165.aspx

109

Interrupt processing works as follows:
1) The hardware generates an interrupt request (IRQ)
2) The Interrupt Service Handler is the target for all interrupts and exceptions. It operates with

interrupts off. The support handler sets up the stack etc.. For the “C” callable ISRs and
determines the appropriate ISR to call (on ARM processors there is only one ISR)

3) The ISR examines the hardware to determine if it is a valid interrupt and returns the logical ID for
the interrupt (SYSINTR_xxx) or SYSINTR_NOP. If shared interrupts are allowed for this IRQ then
the ISR MUST call NKCallIntChain() which will return the appropriate logical ID or SYSINTR_CHAIN
if no device claims the interrupt. The ISR typically disables the interrupt for this IRQ at the
interrupt controller to prevent further interrupts until processing is completed.

4) The interrupt support handler looks up the SYSINTR in an internal table to see if there is an event
associated with that ID. If there is it sets that event so the scheduler may schedule the IST waiting
on it when the IST is the highest priority runnable thread.

5) The interrupt support handler re-enables interrupts for all interrupts
6) The system continues; once the IST associated with the IRQ is the highest priority runnable

thread the scheduler switches to it. To process the Interrupt
7) The IST exits it’s WaitForSingleObject() call on the interrupt event and processes the interrupt. It

should minimally clear or disable the interrupt at the device then call InterruptDone() before
further processing.

8) InterruptDone() re-enables the IRQ at the interrupt controller for other interrupts to occur. This
is why it should be called as soon as possible since other devices sharing the interrupt are
blocked.

9) The IST continues processing and clears and re-enables the interrupt at the device and goes back
to wait for another interrupt.

Module 3: Operating System Internals 110

Shared interrupts:
http://msdn2.microsoft.com/en-us/library/aa929742.aspx

The ISR routine hooked to an interrupt in OEMInit must call NKCallIntChain, a kernel function, to examine a list
of installed ISRs for the interrupt that has been signaled.

If the first ISR determines that its associated device has asserted the interrupt:

It performs any necessary work, and then returns the SYSINTR mapped to the interrupt.
- or -
If the ISR decides that no further processing by the IST is necessary, it returns SYSINTR_NOP.

If the ISR determines that its associated device has not asserted the interrupt, it returns SYSINTR_CHAIN, which
causes NKCallIntChain to call the next ISR in the chain.

Module 7 - Drivers 111

Windows Embedded CE also supports the concept of installable ISRs. Installable ISRs have the advantage of
being loaded dynamically at run time. This allows device drivers to install a custom ISR themselves without
depending on some other entity to build that ISR in to the kernel. Installable ISRs still require that there be a
static ISR built into the kernel registered for the IRQ. The static ISR is responsible for notifying the kernel to
walk the list of installable ISRs, and returning any interrupt identifier that comes out. However the static ISR
may not have any knowledge of the devices that are hooked to the IRQ. This gives the OEM the opportunity to
support any future device that might be installed to use the IRQ.

Installable ISRs are often used to support interrupt sharing, where a single IRQ is used to support multiple
external devices. One example of interrupt sharing and installed IRQs is the PCI bus. The PCI bus is an
expansion bus that has an interrupt specification allowing multiple devices to use the same IRQ. In addition,
virtually any kind of hardware could be implemented on the PCI bus, making it impossible to write a static ISR
that is aware of all the possible devices. PCI drivers use installable ISRs to overcome this limitation. The driver
notifies the kernel to use a particular function in association with a particular IRQ, and the interrupt identifier
that should be associated with it. The static ISR handler in the OAL calls into the installed ISRs, and the first one
to recognize the device as their own returns the associated interrupt identifier. The static ISR returns that to
the kernel, which notifies the IST just like any other driver.

Shared interrupts:
http://msdn2.microsoft.com/en-us/library/aa929742.aspx

Module 7 - Drivers 112

Module 3: Operating System Internals 113

Module 3 - OS Internals 114

Module 4 - Components 115

Module 4 - Components 116

Module 4 - Components 117

Module 4 - Components 118

UDFS - The Universal Disc File System (UDFS) and the Compact Disc File System (CDFS) are used to read
compact discs (CDs), digital video discs (DVDs), and CD-ROMs. For navigating and audio/video playback, CDFS
uses the ATAPI block driver, and UDFS uses the USB block driver or the ATAPI block driver.
BinFS - The binary ROM Image File System is a file system that reads the binary image (.bin) file format
generated by Romimage.exe. The .bin file format organizes data into specific sections. Each section contains a
section header that specifies the starting address, length, and checksum values for that section. Romimage.exe
writes data organized by logical sections, such as an application's text or .data region, to the .bin file.
You can create your own specialized file system. For example, you can use installable file systems to take
advantage of special functionality provided by a new type of storage hardware or to restrict what you can do
with the files on standard PC Card storage hardware.

http://msdn2.microsoft.com/en-us/library/aa914412.aspx
Extended File Allocation Table (exFAT) is a new file system that better adapts to the growing needs of mobile
personal storage. The exFAT file system not only handles large files such as those used for media storage, it
enables seamless interoperability between desktop PCs and devices such as portable media devices so that files
can be easily copied between desktop and device. In addition, exFAT can be adopted with minimal effort; exFAT
encapsulates standard FAT and TFAT functionality.
The exFAT system offers the following advantages:
Enables the file system to handle growing capacities in media, increasing capacity to 32GB and larger
Handles more than 1000 files in a single directory
Speeds up storage allocation processes
Removes the previous file size limit of 4GB
Supports interoperability with future desktop operating systems
Provides an extensible format, including OEM-definable parameters to customize the file system for specific
device characteristics
In addition, you can choose to add support for TFAT to your exFAT implementation to ensure transaction-safe
operations. As of Windows Embedded CE 6.0 and later, TFAT can only be supported in an exFAT environment.

http://msdn2.microsoft.com/en-us/library/aa911938.aspx
This table shows a list of FAT related utility APIs.

Module 4 - Components 119

Module 4 - Components 120

The object store in Windows Embedded CE provides persistent storage for applications and their related data
even when the main power supply is lost, provided there is a backup power supply. One or more memory
storage chips, which typically are nonvolatile RAM chips, compose the physical object store.
Although file systems, databases, and the system registry share a single memory heap, they do not necessarily
reside physically in the object store. They can reside in ROM, on separately installed systems, or on an external
device, such as a flash memory device. Data is created and retrieved according to the storage type,
independent of the actual storage device.
The operating system uses the object store to perform the following tasks:

Manage the stack and memory heap
Compress and expand files as necessary
Seamlessly integrate ROM-based applications and RAM-based data
Both the File System and the Registry will be discussed in more detail.

The built in flat database has some limited use and is sometimes called the Property database as it stores flat
property-set records. The Windows Embedded CE database (CEDB) model is that of a small, flat structure and is
designed for small, efficient storage. As such, the CEDB APIs do not correspond to the Win32 database APIs.
Data operations are processed within the object store or a database volume, which protects against data loss. If
a Windows Embedded CE–based device loses power during a data transaction, Windows Embedded CE reverts
all partial database operations to the last known good state. A file system that stores a database volume still
has the ability to corrupt the volume.
The default database for Windows Embedded CE is CEDB.
Windows Embedded CE also includes support for the embedded database (EDB), which enhances the
functionality of CEDB and includes support for:

Transactions.
Access by multiple users.
Multiple sort orders, key properties, and databases.
Enhanced performance, especially with larger databases.

Object Store:
http://msdn2.microsoft.com/en-us/library/aa910544.aspx

Object Store:
http://msdn2.microsoft.com/en-us/library/aa910544.aspx

Module 4 - Components 121

A file system filter is a dynamic-link library (DLL) that exports file system entry points. These entry points map to
the standard file system functions, such as CreateFile and CreateDirectory. Because file system filters sit on top
of the file system and intercept file system calls, you can use this mechanism to encrypt, compress, or virus
scan any file service manager (fsdmgr) loaded file system. Multiple filters can exist on any fsdmgr loaded file
system performing any combination of file manipulation before the file system sees the call.

File system filters:
http://msdn2.microsoft.com/en-us/library/aa918566.aspx

Module 4 - Components 122

FSD Manager controls most everything related to file access, no matter where the files are stored.
“Registered File Systems”
The Object Store (RAM) File System
The ROM File System.
Release-Directory File System (RELFSD)
“Installable File Systems” - Allow the developer to extend the OS.

The internal file system in your target device controls access to ROM. The file system can also provide file
storage in the object store, which is in RAM. Two internal file system options are available: the RAM and ROM
file system and the ROM-only file system. These have different properties and you will want to select the
correct one for your target device. Both internal file systems provide the ability to mount additional external
file systems, such as file allocation table (FAT).
The RAM and ROM file system provides file storage in the object store, as well as access to the ROM. The object
store is the root of the file system, and all data under the root is stored in the object store, with the exception
of external file systems, which are mounted as directories under the root. Data in ROM is accessible through
the Windows directory. The RAM and ROM file system is most useful in target devices that continuously power
RAM because the object store is lost when RAM is not refreshed.
The ROM-only file system does not allow applications to place files in the object store. Data in ROM is
accessible through the Windows directory, and external file systems are again mounted as directories under
the root. Additionally, with the ROM-only file system, you have the option of choosing an external file system to
be placed at the root of the file system. If you mount a file system as the root, all data below the root directory
is stored in that file system, with the exception of other external file systems.

Select ROM+RAM file system if you want to use the Object Store RAM file system.
Select ROM-only file system if you don’t want to use the Object Store RAM file system even if you don’t want to
mount is as the root of the file system.
The Object Store file system driver is implemented in FILESYS.DLL.

Module 4 - Components 123

It is possible to have multiple file systems as well as multiple filters on a single system.

RELFSD – Release-Directory File System (RELFSD) This is the Platform Builder release directory file system
driver for development use.
The Release Directory File System Driver (Relfsd) was created for development environments. Relfsd mounts
the release directory on the development workstation (set by _FLATRELEASEDIR) to '\release' on the device, so
that any I/O operations to the '\release' directory are routed to the 'release' directory on the development
workstation. In development environments, if the LoadLibrary function cannot find an executable module on
the device; it searches for the module in the directories specified by a registry setting. By default, the directory
is set to \release for development images.

KITL – (Kernel Independent Transport Layer) Used to communicate to between the development workstation
and the target CE device.

Module 4 - Components 124

Module 4 - Components 125

http://msdn2.microsoft.com/en-us/library/aa912217.aspx

The registry is a system database that stores configuration information for applications, drivers, and the
operating system (OS). The registry is most commonly use for storing state information across invocations. For
example, an application might have windows that a user can move and resize. Before exiting, the application
could store its windows information in the registry. Then when the application starts again, it could retrieve the
information and position its windows accordingly.

The basic piece of data that is stored in the registry is called a value. A value can be a variety of types, including
string or binary. Each value has a name and an associated piece of data. For example, a device that is running
the Windows Embedded CE Handheld PC, Professional Edition, software uses the value name Wrap to Window
in the HKEY_LOCAL_MACHINE\Software\Microsoft\Pocket Word\Settings key to store an integer piece of data.

http://msdn2.microsoft.com/en-us/library/aa912217.aspx

Module 4 - Components 126

There are two registry options you can use to select the registry for your target device:
Hive-based registry
RAM-based registry
In Windows Embedded CE 6.0, the registry is hive-based by default.

Hive-based
The Hive-Based Registry stores all registry data in files, also called hives, which can be located on any file
system. This allows OEMs to easily persist the registry across cold boots without powering RAM.
The hive-based registry also provides separate user hives so registry configurations can be customized
differently for each user. A multi-user system will contain several user hives. A user's hive can be mounted on
logon and unmounted on logoff.

RAM-based
The RAM-Based Registry stores all registry data in the object store, which is in RAM. Therefore, registry data
persists on warm boots but not on cold boots.

This key stores information about how the registry is configured in of all places, the registry.
HKEY_LOCAL_MACHINE\init\BootVars

http://msdn2.microsoft.com/en-us/library/aa910532.aspx

Module 4 - Components 127

http://msdn2.microsoft.com/en-us/library/aa936059.aspx

Module 4 - Components 128

Registry related functions:
http://msdn2.microsoft.com/en-us/library/aa914389.aspx

Module 4 - Components 129

For Windows Embedded CE development, memory usage is an important consideration and the registry is no
exception. The following guidelines are based on the fact that it takes less memory to store a value than to
store a key:
Keep your key depth as shallow as possible. Eliminate unnecessary subkeys.
When possible, replace subkeys with values. For example, a subkey Colors might be replaced with a value
named Colors.
Store as much information in one value as possible. For example, a date value could be formatted to include
the time rather than using two values.

Module 4 - Components 130

Registry notification functions:
http://msdn2.microsoft.com/en-us/library/aa917049.aspx

This table lists the registry notification functions available in Windows Embedded CE. Details on each API is
available in the help system and online. Drivers and applications could use these API to monitor registry
changes that would affect their functionality dynamically without coding an separate eventing mechanism.

Module 4 - Components 131

Module 4 - Components 132

Module 4 - Components 133

The Power Manager manages device power, improves overall operating system (OS) power efficiency and
flexibility, provides power management for each device, and coexists with applications and drivers that do not
support the Power Manager. The power manager takes input from a number of sources to determine the
power state of each device under its control. The Power Manager provides both an application and a device
interface.

Module 4 - Components 134

The sample Power Manager implementation defines On, UserIdle, SystemIdle and Suspend as the four system
power states. When the user is actively using the system, the power state is set to On. If the user stops using
the system, the power state is set to UserIdle. After a longer period of user inactivity it changes to the
SystemIdle state. As long as device drivers are active, the system remains in this state. If device drivers become
inactive the system changes to the Suspend state.
The UserIdle state is intended for use when the user is using the device but not actively interacting with it. For
example, the user may be only looking at the display and not interacting with the system. The SystemIdle state
is intended for use when the user is not directly using the system but processes are still active. For example,
during a file transfer the user may consider the device to be idle, even if the system processes are actually still
proceeding.
The sample Power Manager implementation makes various decisions on user and system activity based upon
the UserActivity and SystemActivity timers. The time-outs for transitioning between these system power states
is different when the system is on AC power from when it is only on battery power.
The sample run-time images provided with Windows Embedded CE are all AC powered. You may choose to
implement a separate set of power states for use when the system is on battery power, in a cradle, and so on.
You can implement these customizations by copying the sample Power Manager PDD to the platform directory
and modifying it appropriately.

User Idle Timer
If runs out, system goes to System Idle (turns screen off)
Reset with User Activity (keyboard, touch)

System Idle Timer
If runs out, system suspends
Reset with User Activity (keyboard, touch) and SystemIdleTimerReset()

Module 4 - Components 135

Power manager support is optional in a driver. Drivers must implement a set of IOCTLs defined by the Power
Manager, and advertise support for the Power Manager in order to be managed.

Module 4 - Components 136

Microsoft provides a default power manager implementation that is suitable for many devices. The Power
Manager is implemented as an MDD/PDD driver in the PUBLIC tree. The PDD contains the logic that
determines what system power states are supported and how to transition between them. You may clone the
PDD and modify it to implement your own system power states if your needs are different.

Module 4 - Components 137

Module 4 - Components 138

A device that implements all five power states manages its power dynamically by stepping down from D0 to D1,
or D1 to D2, if it has been inactive for some period of time. The device does this in stages because D2's power
consumption is lower but it is much less responsive also. If the device detects activity, and it is not in D0, it will
attempt to go to D0.

The driver code only keeps track of whether or not it has requested a state transition, not whether the
transition has occurred. This is important, because the device might request D0 while at D2, but the Power
Manager might only set it to D1 because of the current power state. On the next device activity the device
would request D0 again and the Power Manager might simply leave it at D1. Keeping track of the fact that it
requested a state transition would prevent further unnecessary Power Manager API calls while the device is
active. The same logic applies to power state reductions due to inactivity time-outs.

Module 4 - Components 139

Applications (or drivers) can request notification of various power management related events using the
RequestPowerNotifications API. These notifications are broadcast by the Power Manager to all interested
parties using point to point message queues. Applications indicate the type of event they are interested in
when they register for the notifications; they do not need to handle event types they are not interested in. The
available events include

System power state transitions
Change between AC and DC power source
Notification that the system has resumed from a suspend state (applications generally have no
knowledge when suspend is about to occur, they can only find out after the fact).
A battery power status field has changed

These are notifications only; there is no mechanism for the application to modify, delay or block the event in
question. Sometimes applications want to be notified when a suspend is about to occur so they can perform an
action. The notification mechanism does not provide that capability; the best solution is to move the desired
functionality into a driver since drivers do participate in the system power state change.

Module 4 - Components 140

In some situations applications may want to change the system power state. Applications are not assumed to
know which power states are available on a given Windows Embedded CE-based device, nor are they expected
to know the characteristics of the system power states that are available. Rather than calling
SetSystemPowerState with an explicit state name, applications can invoke it with a bitmask describing the
characteristics of the power state into which they want to transition.
The Power Manager will translate this bitmask into a specific power state. For example, an application might
request a system power status change with the POWER_STATE_SUSPEND bit set. The Power Manager would
then transition into Suspend or SuspendCradle, depending on whether or not the system is in a cradle at the
time of the request. If the device were removed from the cradle while in the SuspendCradle state, the Power
Manager would transition the system into a suspend state.
The Power Manager may restrict applications from entering certain system power states. For example, if the
Power Manager is actively controlling system power states based on external inputs, it may not allow you to
explicitly enter an ACRun power state when the unit is running on battery power. The default Power Manager
implementation permits only applications to suspend the system.

Module 4 - Components 141

In some situations applications may want to influence the Power Manager's administration of system power
states. For example, a pager application might want to keep "COM3:" at D3 or higher, even in a suspend state,
so that an incoming page will wake the system. Or a streaming audio application may want to keep the network
card and audio system at full power, even when the system is on battery power and has been idle for a while.
The Power Manager provides the SetPowerRequirement API to support applications that have special power
management needs.
The SetPowerRequirement API allows applications to ask that the Power Manager set a lower bound on device
power states. If a power requirement is in effect, the Power Manager will not allow devices to set their own
power state below that specified by the requirement. When the Power Manager changes system power states,
it will normally keep device requirements in force even if they maintain a device's power state at a level higher
than allowed by the system power state.
Device power requirements are normally set aside when the OS suspends. During an OS suspend state, the CPU
is stopped and interrupts are not serviced. If an application is using a device that might be able to operate
during a suspend state, it can set the POWER_FORCE flag when it calls SetPowerRequirement. It is the
responsibility of a device driver to disable itself if the OS suspends.
The Power Manager may set aside device power requirements under other circumstances as well. For example,
an OEM may choose to interpret the OS power state POWER_STATE_CRITICAL flag as indicating that the
battery level of the OS is critically low and all devices should be turned off.

Module 4 - Components 142

The kernel also contributes to power management outside of the Power Manager. The kernel knows when
there are no threads scheduled to run, and calls the OEMIdle function in the OAL. OEMIdle has the option to
place the CPU into a lower power idle mode that can be quickly exited, assuming the CPU supports an idle
mode. This is the lowest energy usage state possible balanced with the need to return from idle quickly. The
idle mode is completely transparent to the user and the rest of the system.

Module 4 - Components 143

Power management architecture:
http://msdn2.microsoft.com/en-us/library/aa929261.aspx

Module 4 - Components 144

Drivers that are under Power Manager control can only change power states when instructed to do so by the
Power Manager. Drivers can and should still adjust power within a state on their own as long as this doesn’t
require a power state change.

Drivers can request that the Power Manager place them into a different state. This typically occurs when the
driver knows that it is able to go to a lower power state based on its current activity even though the system
power state calls for a higher power device state. The Power Manager may honor that request, or it may not.

Module 4 - Components 145

The Power Manager uses two mechanisms to communicate with power-managed drivers. The Power Manager
calls down to a device driver to determine the device's capabilities and update its device power state. Devices
may call up to the Power Manager to request device power state changes. Down calls are implemented as
IOCTLs. Devices call up to the Power Manager with the DevicePowerNotify API.

Because the Power Manager uses DeviceIoControl to communicate with power-managed devices, such devices
must expose a stream interface. In some situations, a power management proxy may expose the interface.
Network Driver Interface Specification (NDIS) exposes a stream interface that enables proxy management of
NDIS miniport drivers using the RegisterPowerRelationship API. The Power Manager provides a mechanism for
communicating directly with non-stream drivers. This method consists of an abstraction layer for opening a
handle to a device, sending a request, and so on. A majority of devices support the stream interface, but this is
not true in every instance. For example, the driver located in
Public\Common\Oak\Drivers\Pm\Mdd\Pmdisplay.cpp implements a communication interface based on the
ExtEscape function.

Opening standard device names of the format COM1:, and so on, allows access to drivers that expose a stream
interface. However, the Power Manager does not require that power-manageable devices use this naming
format; a device name can be any unique string. So, for example, an NDIS miniport might be named VMINI1.

Module 4 - Components 146

The Power Manager manages device power states within the context of system power states that are defined
by the OEM. System power states are described in the registry and any number can be defined. System power
states impose a global upper bound on device power states.

http://msdn2.microsoft.com/en-us/library/aa930499.aspx

Module 4 - Components 147

The Power Manager expects all managed devices to support one or more device power states. There are a
limited number of device power states, and the device may inform the Power Manager of their power
consumption characteristics. Device power states generally trade off performance with power consumption.

Full on - D0 (only required state)
State in which the device is on and running. It is receiving full power from the system and is delivering full
functionality to the user.
Low on - D1
State in which the device is fully functional at a lower power or performance state than D0. D1 is applicable
when the device is being used, but where peak performance is unnecessary and power is at a premium.
Standby - D2
State in which the device is partially powered with automatic wakeup on request. A device in state D2 is
effectively standing by.
Sleep - D3
State in which the device is partially powered with device-initiated wakeup if available. A device in state D3 is
sleeping but capable of responding to an interrupt and bringing the CPU out of idle on its own. It consumes only
enough power to be able to do so; which must be less than or equal to the amount of power used in state D2.
Off - D4
State in which the device has no power. A device in state D4 should not be consuming any significant power.
Some peripheral busses require static terminations that intrinsically use non-zero power when a device is
physically connected to the bus.

Device Power state definitions are statically predefined. The Power Manager passes a device state to a driver
and the driver is responsible for mapping the state to its device capabilities and then performing the applicable
state transition on its physical device.

Device power states:
http://msdn2.microsoft.com/en-us/library/aa932261.aspx

Module 4 - Components 148

The following registry settings show a sample system power state to device power state mapping.
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\On]

"Default"=dword:0 ; D0
"Flags"=dword:10000 ; POWER_STATE_ON

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\UserIdle]
"Default"=dword:1 ; D1
"Flags"=dword:0

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\SystemIdle]
"Default"=dword:2 ; D2
"Flags"=dword:0

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\Suspend]
"Default"=dword:3 ; D3
"Flags"=dword:200000 ; POWER_STATE_SUSPEND

; @CESYSGEN IF CE_MODULES_NDIS
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\Suspend\{98C5250D-C29A-4985-
AE5F-AFE5367E5006}]

"Default"=dword:4 ; D4
; @CESYSGEN ENDIF CE_MODULES_NDIS

When the system enters the Suspend state using this sample configuration, all possible wake sources are
enabled with the exception of NDIS miniports. If a device does not support D3, it should automatically enter D4
instead.

Power states:
http://msdn2.microsoft.com/en-us/library/aa929251.aspx

Module 4 - Components 149

The Power Manager also implements a general purpose timer control. The timers are configurable in the
registry, any number of timers can be implemented. The timers are based on named events; the name is taken
from the registry configuration. Any OS component can make use of this mechanism.

The default Power Manager implementation configures two activity timers for its own use. These timers are
used to determine user activity and system activity. OS components that have knowledge of user and system
activity reset these timers. The Power Manager uses this information in determining when to transition
between system power states.

Activity timers:
http://msdn2.microsoft.com/en-us/library/aa923909.aspx

Module 4 - Components 150

The Power Manager implements the suspend sequence in response to a SetSystemPowerState call. The power
manager notifies drivers to move to their low power suspend state as configured in the registry. Drivers that
are not power manager aware will also be notified of the suspend sequence, but at a later point in the process.

Applications can initiate a suspend sequence by calling SetSystemPower state, as long as the Power Manager
implementation permits it. However, applications can not otherwise participate in the suspend process. Any
functionality that needs to participate in the suspend process should be in a driver.

http://msdn2.microsoft.com/en-us/library/aa929293.aspx

Module 4 - Components 151

The suspend state is the lowest possible power state short of removing power from the device. This state is
only possible if the CPU supports a suitable low power mode. Memory contents are maintained during
suspend, allowing the device to return to exactly the state it left. The act of returning from the low power
mode back to the original state is known as “resume”. Applications that are running on the device have no
knowledge that this state change has occurred, unless they have requested the appropriate notifications from
the Power Manager.

http://msdn2.microsoft.com/en-us/library/aa929293.aspx

Module 4 - Components 152

The suspend state is the lowest possible power state short of removing power from the device. This state is
only possible if the CPU supports a suitable low power mode. Memory contents are maintained during
suspend, allowing the device to return to exactly the state it left. The act of returning from the low power
mode back to the original state is known as “resume”. Applications that are running on the device have no
knowledge that this state change has occurred, unless they have requested the appropriate notifications from
the Power Manager.

http://msdn2.microsoft.com/en-us/library/aa929293.aspx

Module 4 - Components 153

Module 4 - Components 154

Module 4 - Components 155

Internationalization is made up of a collection of functionality that provides general locale services and locale–
specific support for certain key capabilities. Internationalization spans a range of language-specific functionality
starting with code pages, keyboards and fonts.
Windows Embedded CE provides general locale services for numerous code pages, and linguistic and cultural
conventions through Unicode and national language support (NLS). Unicode is a universal character encoding
system, while NLS carries information on date, time, calendar, number, and currency formats. NLS also
provides sorting and character type information for all the locales supported by the operating system (OS).
The Multilingual User Interface (MUI), functionality makes it possible for users to switch the language and
locale of the user interface (UI).
In addition to general and language–specific functionality, internationalization includes support for a
handwriting recognition engine that is extremely useful when working with East Asian languages. This
functionality supports several East Asian language input methods (IM) and Input Method Editors (IME) that are
uniquely designed for a specific language. East Asian languages require IMEs in order to input characters from a
keyboard or stylus tablet.

http://msdn2.microsoft.com/en-us/library/aa911922.aspx

Creating software that is great in many different locals in the world is an ever increasing challenge. Each market
is unique, understanding those market needs and creating great software for specific area can be described as
localization.

Making software that accommodates differences in language, culture, and hardware is called
internationalization. The goal of internationalization is to present users with a consistent look, feel, and
functionality across different language editions of a product. Users expect localized software to support the
same basic functionality that the original–language edition of the product does, and they expect it to have the
same level of quality. They also expect different language editions to interact smoothly with one another.
Windows Embedded CE provides support for numerous character codes, as well as linguistic and cultural
conventions through Unicode and national language support (NLS). Unicode is a universal character encoding
system, while NLS carries information on date, time, calendar, number, and currency formats. NLS also
provides sorting and character-type information for all the locales supported by the operating system (OS).
In addition to character and locale codes, The international support in Windows Embedded CE includes a
handwriting recognition engine that is extremely useful when working with East Asian languages and the
Multilingual User Interface (MUI), functionality that makes it possible for users to switch the language and
locale of the user interface (UI).

Windows Embedded CE also supports a range of language-specific technologies. These technologies include
several East Asian language Input Methods (IM) and Input Method Editors (IME) that are uniquely designed for
specific languages. East Asian languages require IMEs in order to input characters from a keyboard or stylus
tablet. Windows Embedded CE also provides support for Complex Scripts, as well as the locales that use
Complex Scripts. Windows Embedded CE includes the Unicode Script Processor to handle and process Complex
Scripts.

Module 4 - Components 156

Module 4 - Components 157

Windows Embedded CE provides support for a number of different locales. OEMs can also extend and
customize the internationalization. The locale-specific support in Windows Embedded CE includes fonts,
keyboards and keyboard drivers, Input Method Editors (IMEs), and Input Methods (IMs).

http://msdn2.microsoft.com/en-us/library/aa913326.aspx

Here we see the locale support “out of the box”. The exact support is based on the locale being support,
typically including fonts, keyboard drivers, IMEs, and IMs. This support is extensible by OEMs.

Module 4 - Components 158

National Language Support (NLS)
SYSGEN_CORELOC
Adds NLS support. NLS supports the different locale-specific needs of users around the world.

Multilingual User Interface (MUI)
SYSGEN_MULTIUI
Adds support for MUI. MUI enables you to create one run–time image for Smartphone with multiple languages,
and thus allow the end–user to switch the user interface language.

Unicode Script Processor for Complex Scripts
SYSGEN_UNISCRIBE
Supports scripts that require special processing to show and edit because the characters are not laid out in a
linear progression from left to right. Windows Embedded CE provides the correct text handling and layout for
these scripts, as well as for mirroring capabilities.

Input Method Manager
SYSGEN_IMM
Adds Input Method Manager (IMM). IMM manages the communication between an Input Method Editor (IME)
and an application.

Handwriting Recognizer Engine (HWX)
SYSGEN_HWX
Provides a handwriting recognition engine that supports user-drawn ideographs and characters.

http://msdn2.microsoft.com/en-us/library/aa913456.aspx

Module 4 - Components 159

The Multilingual User Interface (MUI) allows users to change the language of the user interface (UI). To make
this possible, the MUI uses a single core binary that includes the system default language, together with one
resource dynamic–link library (DLL) for each additional target language. The target device boots with the
system default language and then a new user–selected language goes into effect after a soft reset. This switch
requires recreating windows, menus, and dialog boxes with the newly loaded resources. In addition, to be
considered successful, the language switch must display these elements with the correct fonts and with the
correct locale–specific information.

http://msdn2.microsoft.com/en-us/library/aa913592.aspx

Module 4 - Components 160

Module 5 - The Build System 161

Module 5 - The Build System 162

Module 5 - The Build System 163

Module 5 - The Build System 164

http://msdn2.microsoft.com/en-us/library/aa908702.aspx

Module 5 - The Build System 165

Build system tools:
http://msdn2.microsoft.com/en-us/library/aa908689.aspx

http://msdn2.microsoft.com/en-us/library/aa908689.aspx

Module 5 - The Build System 166

http://msdn2.microsoft.com/en-us/library/aa909638.aspx

During the OS Design generation, or Sysgen phase, the build system sets or clears Sysgen variables.

The inclusion of Sysgen variables is typically based on the selection of Catalog items that you include in your OS Design. The
relationship between Sysgen variables and Catalog items can vary. A Catalog item might correspond to more than one
Sysgen variable.

The build system determines which variables to set or clear by processing the Cesysgen.bat files associated with the OS
Design, which are in %_WINCEROOT%\OSDesigns\<OS Design name>\Oak\Misc.

The master Cesysgen.bat file manages a set of subordinate batch files that correspond to the dependency trees included in
the OS Design. The build system uses these variables to link the corresponding static libraries into modules.

The build system also filters the header files, creating headers that only contain prototypes for the functions exported by
your OS Design. Import libraries for the modules are also created during this phase.

The filtered header files and import libraries are included in the software development kit (SDK), which others can use to
create applications that run on the new OS.

Also, OS Design configuration files are filtered to create a new set of configuration files specific to your OS Design, which are
used in the Make Image phase.

At the end of the Sysgen phase, the board support package (BSP) is built.

Localization tasks performed during the Sysgen phase include selection of input method editors (IMEs) and fonts for Asian
languages, based on the selected locales.

Environment variables and actions are executed on a per project basis, which means that environment variables you set in
one project do not affect variables defined by another project.

Module 5 - The Build System 167

Uses Build.exe tool
Compiles and links source code in $(_WINCEROOT)\PLATFORM\COMMON
Compiles and links source code in BSP
Bootloader, drivers, OAL etc
Compiles and links source code in subprojects
Uses filtered OS components
Libraries, header files

Module 5 - The Build System 168

The post-sysgen build can also include a local sysgen step. The sysgen in this phase applies only to the local
build target, typically the BSP. This allows the BSP to make use of the capabilities provided by the sysgen tool.
The reference BSPs provided by Microsoft use the filtering capability provided by the sysgen process to
selectively remove components that are not supported by the OS Design. This allows the BSP to build
successfully without modification even though the OS support for a component does not exist.

BSPs can participate in this sysgen step by including the cesysgen folder in their root, containing an appropriate
makefile. Most BSPs that use this capability have a simple makefile that just includes
$(_WINCEROOT)\public\common\cesysgen\CeSysgenPlatform.mak. This makefile is configured to filter the
platform configuration files.

Module 5 - The Build System 169

The build process copies the OS components created during the System Generation phase and the BSP
components created during the Build phase to a single directory known as the Flat Release Directory during the
Build Release Directory phase (known as buildrel after the batch file that implements it).

The Buildrel tool copies files from a number of sources to a common directory in preparation for the Make Run-
Time Image phase. These files include the OS components that were built during the System Generation phase
as well as the BSP build phase. The contents of the following directories are copied by the buildrel tool:
%_PROJECTROOT%\Cesysgen\Oak\Files
%_PROJECTROOT%\Oak\Files
%_PROJECTROOT%\Cesysgen\Oak\Target\%_TGTCPU%\%WINCEDEBUG%
%_PROJECTROOT%\Oak\Target\%_TGTCPU%\%WINCEDEBUG%

%_PLATFORMROOT%\%_TGTPLAT%\Target\%_TGTCPU%\%WINCEDEBUG%
%_PLATFORMROOT%\%_TGTPLAT%\Files
%_PLATFORMROOT%\%_TGTPLAT%\cesysgen\Files

The WINCEREL environment variable, if set, causes the build tools to automatically binaries to the release
directory when they are built. This is a performance enhancement that allows quick turnaround when
recompiling BSP components. Note that you must still have performed the buildrel phase at least once in order
to copy all of the OS binaries as well as configuration files to the flat release directory. You must also run the
buildrel tool if you change configuration files.

The buildrel tool uses hard links instead of a normal copy to get significantly increased performance. For this
reason, you should not edit files directly in the release directory. This is a shortcut that is sometimes used, but
it can cause unintentional corruption of the original source file if your editor does not cause the link to be
broken. These kinds of problems can be very difficult to track down. You can set the BUILDREL_USE_COPY
environment variable to ensure that buildrel uses xcopy instead of hard links if you suspect problems with hard
links.

Module 5 - The Build System 170

In the making an image phase, the Makeimg tool performs the following steps:
1. Makeimg merges the configuration files used in the build process:
a. Makeimg merges all .BIB files into a unique file (CE.BIB) by using the Fmerge tool. CE.BIB identifies all the files
to be combined in the image.
b. Makeimg merges all .reg files into a unique file (reginit.ini) by using the Fmerge tool. Reginit.ini represents all
registry entries for the image.
c. Makeimg merges all .dat files into a unique file (INITOBJ.DAT) by using the Fmerge tool. INITOBJ.DAT provides
a description of the directory and a file location for the image.
d. Makeimg merges all .db files into a unique file (initdb.ini) that defines default databases in the image.
2. Compresses the reginit.ini file into a binary file (DEFAULT.FDF).
3. Replaces resources in modules to adapt the image to a specific language.
The language must be specified by the LOCALE environment variable.
4. Finally, makeimg completes the Windows Embedded CE image with files and binaries specified in CE.BIB.
To make an image using the Platform Builder IDE:
• On the Build menu, click Make Image.

http://msdn2.microsoft.com/en-us/library/aa909387.aspx

Module 5 - The Build System 171

Module 5 - The Build System 172

config.bib is part of the BSP and is located in the FILES folder of the platform.

Module 5 - The Build System 173

Module 5 - The Build System 174

Module 5 - The Build System 175

Module 5 - The Build System 176

Module 5 - The Build System 177

Module 5 - The Build System 178

Module 5: The Build System 179

The .DAT files define folder structure of your image. In the example shown in the slide, two directories are
defined, which are Program Files and My Documents. These directories are located in the root directory, which
does not have any letter in Windows CE. Program Files has one subdirectory My Project. The My Documents
directory contains a file MyFile.doc. Note that it is only an allocation; MyFile.doc must appear in a .BIB file to be
inside the image.

Module 5 - The Build System 180

You do not need to perform the entire build process every time you make a change in your development
process. The steps that are necessary depend on the kind of change you made; the guidelines provided above
are not hard rules. You must have a thorough understanding of the build process in order to make the most
efficient use of your development time, which comes only with experience.

Module 5 - The Build System 181

During the development process, you can use the Platform Builder integrated development environment (IDE)
to select one of two default build configurations for your OS Design. These configurations are called Debug and
Release configurations, and offer different options.
The term debug is used to refer to a configuration which, when built, results in a run-time image that includes
many debug messages and typically does not use compiler optimizations
The term release is used to refer to a configuration which, when built, results in a run-time image that usually
includes compiler optimizations and few debug messages. This type of build could be used for a release
candidate (RC).
The term ship refers to an optimized build that contains no debug messages. This would be used for the final
RTM code ship.
Debug - Building a Debug configuration produces a very large run-time image, which has full debugging
enabled. From the Build menu, select Configuration Manager, and then in the Active solution configuration
field, select Debug. This sets the environment variable WINCEDEBUG=debug.
Release- Building a Release, or Retail, configuration produces a smaller run-time image, which has limited
debugging enabled. Release configurations support the RETAILMSG macro, and can be configured for
debugging. From the Project menu, select OS Design Properties, and then select the Build Options page. Then
verify that both the Enable KITL and Enable Kernel Debugger check boxes are selected. This sets the
environment variable WINCEDEBUG=retail.
Ship - Building a Ship configuration produces the final run-time image that will be provided to the customer,
and which has no debugging enabled. This is the last step and may involve a social event to celebrate the
successful completion of the project and RTM (Release To Manufacturing).
Major steps in creating a ship build:
Clear the Enable KITL check box, which clears the Enable CE Target Control Support check box if it is also
selected. This also sets WINCEDEBUG=retail.
Verify that the Enable Kernel Debugger check box is cleared.
Select the Enable Ship Build check box. This sets WINCESHIP=1

Module 5 - The Build System 182

Module 5 - The Build System 183

Module 5 - The Build System 184

Build tool:
http://msdn2.microsoft.com/en-us/library/aa909690.aspx

Module 5 - The Build System 185

Module 5 - The Build System 186

The SOURCES file contains the component specific directives needed by build.exe and nmake. The SOURCES
file is included by the shared system wide makefile called makefile.def. This allows the component makefile to
remain relatively simple.. The shared system makefile is included by a simple one line makefile in the
component subdirectory.

Module 5 - The Build System 187

Module 5 - The Build System 188

Module 5 - The Build System 189

Module 5 - The Build System 190

Module 5 - The Build System 191

Module 5 - The Build System 192

Wince.bat prepares the development workstation build environment by using three input parameters to
determine the build environment, the location of the source files used during the build process, and the files
created during the build process.

When Wince.bat is executed, it uses the following three input parameters to set the environment variables
specific to the Windows Embedded CE project. These variables are used throughout the build process to build
the appropriate targets.
%_TGTCPU%
%_TGTPROJ%
%_TGTPLAT%

%_WINCEROOT% must be set before running Wince.bat. Otherwise, Wince.bat reports an error and exits.
Wince.bat continues to set a series of environment variables. In addition, Wince.bat calls several batch files,
which can also contain environment variables.

In addition, Wince.bat calls several other batch files which can also contribute variables to the build
environment. These include
%_TGTPLAT%.bat - Sets OS Design-dependent environment variables related to the OS Design. This must be in
the %_WINCEROOT%\Platform\%_TGTPLAT% directory.
%_TGTPROJ%.bat - Sets project-dependent environment variables. Each configuration and demonstration
project folder in the Public directory contains a batch file named after the corresponding project. This must be
in the %_PROJECTROOT% directory.
Setenv.bat -Sets private environment variables for the build window. This must be in the
%_WINCEROOT%\Developr\%USERNAME% directory.

Wince.bat is also called by the IDE to setup the same build environment for IDE builds. There are several
environment variables that the IDE sets before calling wince.bat configuring it to use the directory structure
under OSDesigns. If these environment variables are not properly defined, the OS Design folders will be
defaulted to locations in the PUBLIC tree. In general, you should not be calling wince.bat directly so this should
not be a concern. If you need to call it for some reason, examine the batch file to see how it sets up the build
environment.

Module 5 - The Build System 193

BSP environment variables define the level of optional support available with a board support package (BSP).
There are two categories of BSP environment variables:
BSP variables are used to choose a default driver implementation for each class of device. For example, if your
target device uses an RTL8139 NIC, set BSP_NIC_RTL8139 = 1.
BSP_NO variables are used to define options not supported by a BSP or target device. For example
BSP_NOAUDIO - would exclude support for audio.

IMG environment variables remove modules from the image being built. These variables leave the associated
registry entries in your OS Design intact. If you set or unset an IMG environment variable in your OS Design, you
do not have to perform a full rebuild of your run-time image. Instead, you can simply run the Make Image tool
to create the new run-time image. These variables are available for your convenience and are not for use in a
shipped product. Example: IMGNOKITL - Selects a kernel that is not KITL-enabled.

PRJ environment variables enable project-specific functionality in your OS Design.
Example: PRJ_BOOTDEVICE_ATAPI - Enables ATAPI as the boot device

Module 5 - The Build System 194

There are several ways to get a command line build environment that can be used for your OS Design. You can
open a build window from within the IDE using the Build menu. This option is best for day to day development,
but doesn’t work in automated build environments.
Platform Builder also provides an executable that will set up an appropriate build environment for you based
on your OS project file (pbpxml). This option requires that you have already created the OS Design using the
Platform Builder plug in for Visual Studio, and you have a pbpxml project definition. You can use the
pbxmlutils.exe utility to create a build window shortcut, or to create a batch file that will setup the build
environment for you.

You could create the build environment yourself by calling wince.bat with the appropriate parameters, but this
is not recommended.

Pbxmlutils:
http://msdn2.microsoft.com/en-us/library/ms924887.aspx

Module 5 - The Build System 195

BldDemo.bat is the primary interface to the unified build system in Windows Embedded CE. This tool is used by
the IDE to completely build the OS run-time image. It calls various other internal batch files to complete each
of the build phases. Blddemo can be used in a command line environment; the unified build architecture
means that builds performed from the IDE use exactly the same tools and processes as those performed from
the command line.

Module 5 - The Build System 196

Module 5 - The Build System 197

Global settings are used for OS build selections and Targeted build settings are used for BSP, component, and
other targeted build selections.
The make image phase will not run if connected to the target as the nk.bin will be in use.

Module 5 - The Build System 198

Module 5 - The Build System 199

Module 5: The Build System 200

Module 5: The Build System 201

In general, do not check in files that are outputs of the build process.

Module 5 - The Build System 202

Module 5 - The Build System 203

Module 5 - The Build System 204

The build output windows provides information for various phases of the build. Here we see the start of a build.
Note that this build is running the command “blddemo -q”.

Module 5 - The Build System 205

During the OS Design generation, or Sysgen phase, the build system sets or clears Sysgen variables.

The inclusion of Sysgen variables is typically based on the selection of Catalog items that you include in your OS
Design. The relationship between Sysgen variables and Catalog items can vary. A Catalog item might
correspond to more than one Sysgen variable.

The build system determines which variables to set or clear by processing the Cesysgen.bat files associated with
the OS Design, which are in %_WINCEROOT%\OSDesigns\<OS Design name>\Oak\Misc.

The master Cesysgen.bat file manages a set of subordinate batch files that correspond to the dependency trees
included in the OS Design. The build system uses these variables to link the corresponding static libraries into
modules.

The build system also filters the header files, creating headers that only contain prototypes for the functions
exported by your OS Design. Import libraries for the modules are also created during this phase.

The filtered header files and import libraries are included in the software development kit (SDK), which others
can use to create applications that run on the new OS.

Also, OS Design configuration files are filtered to create a new set of configuration files specific to your OS
Design, which are used in the Make Image phase.

At the end of the Sysgen phase, the board support package (BSP) is built.

Module 5 - The Build System 206

At the end of the sysgen phase a build of the BSP starts.

Module 5 - The Build System 207

During the Release Copy phase, the build system copies all files that you need to make a run-time image to the
release directory. The modules and files created during the Sysgen phase are copied to this directory first,
followed by the files created in the Compile phase.

This part of the build output window is showing the building of a release directory (buildrel) phase involves
copying files from the first two phases into a single directory. The net result is a collection of all the files that
are to be included in the operating system image in a single place.

During the Release Copy phase, binary image builder (.bib) and registry (.reg) files are propagated to the
Release directory. However, if your headers and libraries are up-to-date, this phase might not be executed. If
you make changes in these files, verify that Copy Files to Release Directory After Build and Make Run-Time
Image After Build are selected; then from the Build menu in Platform Builder, run Build and Sysgen to ensure
propagation of the changed files.

Module 5 - The Build System 208

During the Make Run-Time Image phase, the files in the release directory are combined to create a run-time
image, typically named Nk.bin.
At the beginning of the phase, the project-specific files, which include Project.bib, Project.dat, Project.db, and
Project.reg, are copied to the release directory.
Localization tasks performed during this phase include the attachment of resources to executables and string
substitutions for configuration files, based on the selected locales.

This part of the build output window is showing the make image (Makeimg) phase involves taking all the files
from the build release directory and merging the files into a single file. This single file is what you download to
the reference platform hardware. This file, when packaged for downloading to a bootloader, is named NK.BIN
by default.

Module 5 - The Build System 209

Module 5 - The Build System 210

The Build logs are central to troubleshooting build errors. During the build process, Build.exe generates several log files in
the root directory where it was called.
Build.log - Contains a log of commands invoked by Nmake.exe.
Build.wrn - Contains a list of warnings generated during the build process.
Build.err - Contains a list of errors generated during the build process.
Note that Build.err won’t be created if there aren’t fatal errors, so in the screen shot above it is happy news that the file
isn’t present. Detecting if this file is present or not is one tool in automating build processes.

Seeing what worked and where you stopped can help you narrow in on the phase that the build error is occurring. Once you
know what phase you are in you can apply the particular tips for those areas. What you would like to see at the end of the
build is zero errors.

Build messages typically use the following format.
Copy CodeBUILD: [NN:SSSSSSSSSS:TTTTTT] Message

NN - In multi-threaded builds, this specifies the ID of the thread in which the error occurred.
SS - Sequence number of the build message. This number increases with each build message.
TT - Type of message.

Message - Description
ERRORI - Error detected by Build.exe.
ERRORE - Error detected by an external program, such as Link.exe or Cl.exe.
WARNS - Serious warning detected by Build.exe.
WARNN - 'Normal' warning detected by Build.exe or an external program.
PROG - Progress.
PROGC - Console progress.
INFO - Informational message.

Module 5 - The Build System 211

Errors During the Sysgen Phase
Errors in the Sysgen Phase are usually caused by missing files. Errors can also be caused due to missing
configurations of the operating system features or applications built during the Sysgen phase. Examine build.log
to determine specific problems. Determine if you have modified any components under the \Public tree.

Errors During the Build Phase
Errors in the build phase are usually compilation syntax error or unresolved link errors. Examine build.err for
specific problems.

Errors During the Building a Release Directory (buildrel) Phase
In this phase, you get file copy errors. This can be due to out of disk space, locked files or read only files. Check
your hard drive for enough space, check if you have a text editor open on a file in FLATRELEASEDIR and think if
you’ve manually copied something in which could be read only. Check the build.log for more information about
the errors.

Errors During the Making an Image (makeimg) Phase
Errors in this phase can be caused due to missing files in the Flat Release directory. This could be the possible
result of previous errors or Bib file errors. Check the build.log or build.err to determine the specific problems.
The common Makeimg errors are:
* Romimage.exe failed in CE.BIB
This occurs due to missing files in the Flat Release directory, which have entries in one of the BIB files.
* Romimage.exe failed in reginit.ini
This error is caused due to syntax errors in the CE Registry.
* Error: Image exceeds
This error is caused by building an image that is larger than the amount of NK space you specified in config.BIB.

Module 5 - The Build System 212

Module 5 - The Build System 213

Module 5 - The Build System 214

Module 6 - The BSP 215

Module 6 - The BSP 216

Module 6 - The BSP 217

Module 6 - The BSP 218

A board support package (BSP) is the common name for all board hardware-specific code. It typically consists of
a boot loader, OEM adaptation layer (OAL), configuration files, and board-specific device drivers

The BSP creation process involves the following tasks:
Developing a boot loader
Developing an OAL
Creating device drivers
Modifying run-time image configuration files

If you do not have a BSP, you can create a new one or clone an existing BSP that is designed for similar
hardware.

If you have an existing BSP for a previous version of Windows Embedded CE, you can migrate or update it to be
fully compatible with the features in Windows Embedded CE 6.0.

Module 6 - The BSP 219

Module 6 - The BSP 220

The SOC directory is new for Windows Embedded CE 6.0. The contents of the Windows CE 5.0 CSP directory has
been restructured and migrated to the SOC directory.

Module 6 - The BSP 221

Module 6 - The BSP 222

The bootloader is the first software that runs on a Windows Embedded CE based device. Its primary purpose is
to initialize the hardware, load the operating system into memory and jump to the operating system entry
point. The bootloader can optionally perform other tasks as required by the device OEM.
The bootloader is almost always implemented as a separate component (i.e. built separately from the OS). This
allows the bootloader and OS to be updated independent of each other. It is possible, but not recommended,
for the bootloader functionality to be incorporated directly into OAL startup code.

Module 6 - The BSP 223

CE 6.0 does not impose any particular requirements on the bootloader except that it eventually cause the OS
entry point in the kernel to be called with the MMU off and hardware properly initialized. This lack of hard
requirements means that device OEMs have virtually unlimited flexibility in how they implement their
bootloader. OEMs often include extended functionality such as a primitive user interface, hardware
diagnostics, flash memory management functions etc. Devices that store the operating system image in flash
memory often use the bootloader to update the OS image.
Device OEMs can implement all of this in any manner they like. Do not assume that functionality present in one
bootloader is present in another device from a different manufacturer.

Module 6 - The BSP 224

The Common code includes a framework (often called BLCOMMON) that can be used to implement a Windows
Embedded CE bootloader. The framework primarily supports integration with the Platform Builder tools
allowing OS images to be downloaded using the IDE. The framework consists of a common bootloader function
in BLCOMMON that calls back into the BSP at a number of defined points. The BSP callbacks allow the OEM to
implement custom functionality specific to the device. The BSP developer can also make use of other Common
libraries as appropriate (caches, PCI etc).

This slide demonstrates the basic implementation of the BLCommon bootloader. The functions in bold are
some of the functions that the BSP must implement for a BLCOMMON based bootloader. The OEM has great
latitude to implement platform specific functionality in the various callbacks. Note that this slide does not
represent the complete functionality of the BLCommon framework.

Startup()
Low level function that initializes hardware and calls C entry point.
Main()
High level entry point. Calls BLCOMMON framework entry point, BootloaderMain()
BootloaderMain()
Implements bootloader control loop, calls back into BSP at defined points.
OEMDebugInit()
Initializes debug transport, usually debug serial port.
OEMPlatformInit()
High level platform initialization. Often customized to implement device specific functionality e.g. bootloader
menu
OEMPreDownload()
Called prior to image download. Determine whether download should occur.
OEMWriteFlash()
Platform specific flash algorithm. Called if downloaded image needs to be written to flash.
OEMLaunch()
Launch operating system image

Module 6 - The BSP 225

The OEM Abstraction Layer (OAL) is the layer between the operating system kernel and the device hardware.
The OAL contains the hardware specific implementations necessary to handle interrupts, timers, power
management etc. The OAL “abstracts” the custom device hardware to well known interfaces exposed to the
kernel. This allows the common Windows Embedded CE kernel to run on unique hardware devices.

The OAL has a set of required functions that must be implemented in order to interface with the operating
system kernel. These functions can be implemented directly in the BSP, or the BSP can leverage the Common
libraries. The Common libraries provide implementations for many of the required OAL functions. These
implementations are included in the OAL simply by linking to the correct Common library when building
OAL.EXE.

An OAL architecture that is based on the Common libraries is referred to as a Production Quality OAL or PQOAL.
This is does not mean that an OAL that does not leverage these libraries is not of production quality, it simply
doesn’t implement the PQOAL architecture. The reference BSPs provided by Microsoft use the PQOAL
architecture.

Many of the implementations in the Common code have dependencies that must be resolved in the BSP.
These include both functions and data structures. These BSP callbacks are the mechanism that allows the
Common code to be utilized with a customize hardware implementation. These callbacks are typically easier to
implement than the actual function, and make the platform specific customizations more obvious. This reduces
the complexity in porting the BSP to a different hardware platform.

The Common code has a rich set of functionality that should be leveraged when creating a new BSP. However
the degree of Common code use will vary depending on the BSP. It’s important to note that the Common code
is not one single component, but a rich set of functionality that can be leveraged as needed. There is no need
to change a working BSP implementation for the sole purpose of leveraging Common code functions.

Module 6 - The BSP 226

The OAL is built in two stages. The BSP specific source code is built into a library called OAL.LIB. This library is
then linked with a number of other libraries to create the final OAL.EXE component.

Note that in Windows Embedded CE6.0 only a single version of the OAL is built. There is no longer a need to
build separate versions to support profiling and the Kernel Independent Transport (KITL). This is a result of the
separation of the kernel from the OAL.

The OAL.EXE component is renamed to NK.EXE during the makeimg phase of the build process. NK.EXE is the
traditional name of the kernel in the operating system image. Previous versions of the operating system built
multiple versions of the kernel in the BSP to support combinations of kernel profiling and KITL. One of those
versions was selected based on configuration options and given the common NK.EXE name.

Module 6 - The BSP 227

Refer to the OEM Adaptation Layer Reference in MSDN for complete OAL programming element descriptions.
http://msdn2.microsoft.com/en-us/library/aa913478.aspx

Module 6 - The BSP 228

Module 6 - The BSP 229

Module 6 - The BSP 230

Module 6 - The BSP 231

Module 6 - The BSP 232

Module 6 - The BSP 233

Module 6 - The BSP 234

Microsoft provides a BSP certification process for those interested. For more information on this program check
out:
http://msdn2.microsoft.com/en-us/embedded/bb397378.aspx

The first step of creating a BSP is frequently to decide what BSP to use as a starting point. One that decision is
made the BSP chosen should be cloned to create the starting point for the new BSP. Once cloned the level of
effort could be as simple as basic modification or as complex as a removing most of the functionality leaving a
basic skeleton as the starting point.

Module 6 - The BSP 235

Module 6 - The BSP 236

Module 7 - Drivers 237

Module 7 - Drivers 238

Module 7 - Drivers 239

Module 7 - Drivers 240

Many device driver concepts are documented on MSDN:
http://msdn2.microsoft.com/en-us/library/aa917820.aspx

A device driver is software that abstracts physical or virtual devices from the operating system. This allows an
application developer to call Win32 APIs to perform an operation on the underlying device without needing to
understand the low level details of the device. A driver also allows similar devices to be exposed to applications
with a common interface, even though different devices might have slightly different implementations.

For example, an application developer can transmit data across a serial port with calls CreateFile() on COMx
(where x denotes the serial port number to be opened, for example COM1 for serial port 1), WriteFile() to
write some bytes of data to the serial port, and CloseHandle(). Other standard APIs exist to do other
operations on the port including configuring its characteristics. The same sequence of APIs works for any
device that is exposing itself as a serial port no matter what the underlying device actually is. It is even possible
that there is no physical hardware associated with the port.

Device drivers:
http://msdn2.microsoft.com/en-us/library/aa447514.aspx

Module 7 - Drivers 241

Module 7 - Drivers 242

There are many different ways to categorize device drivers depending on the context. Drivers are
differentiated based on who loads them, where they are loaded, when they are loaded, how they are
architected, as well as the family of devices they control.

Module 7 - Drivers 243

Microsoft provided layered drivers are often referred to as MDD/PDD drivers. This terminology refers to the
components that make up the driver. An MDD/PDD driver model is provided by Microsoft for a number of
sample or reference drivers included in Platform Builder. The MDD/PDD model is intended to ease the porting
effort required to implement a driver for new hardware.
The MDD/PDD architecture contains two layers. The MDD (Model Device Driver) is a library of routines that
implements functionality and features considered to be common to all drivers in a particular device class. The
MDD code often can be used unmodified as long as the feature set that it supports is sufficient to meet the end
user requirements.
The PDD (Platform Device Driver) layer implements that hardware specific requirements of a particular driver.
The PDD layer is called by the MDD layer.
Each family of drivers that is implemented using an MDD/PDD architecture has its own set of APIs that make up
the MDD/PDD for that driver family, for example there is a serial MDD/PDD model, an audio MDD/PDD model
etc. The upper level interface exposed by the MDDs (in the form of specific IOCTLs) is generally expected by
higher level OS components.

Module 7 - Drivers 244

Monolithic drivers do not implement the layered MDD/PDD approach. Monolithic drivers are typically written
when an MDD/PDD driver model does not exist, when unique requirements can’t be handled by the existing
MDD implementation, and when performance needs become more important than ease of implementation.
Monolithic drivers are also written when the device hardware is capable of implementing many of the features
that are otherwise implemented in the MDD. This is another area where a monolithic driver can provide better
performance.

Regardless of whether you implement a monolithic driver or a layered driver, you can base your
implementation on the source code for any of the sample drivers.

Module 7 - Drivers 245

Need something a little different than the MDD/PDD sample driver offers? Consider cloning the MDD and
modifying it to suit unique requirements. This allows the developer to leverage the existing code and still
implement unique features of a particular device. Note that you must still expose the same minimum level of
functionality at the upper edge to maintain compatibility with OS components that utilize a particular driver
interface.

Module 7 - Drivers 246

Another way to differentiate drivers is by the way in which they are loaded and managed. There are two
general driver models in this categorization: Native and Stream drivers.

Native drivers are special purpose drivers that are not managed by the Device manager component and do not
have to export an API that is compatible with generic drivers. Rather, they are loaded directly by their host
component (gwes.dll). The term “native” refers to the interface between GWES and the hardware. Native
drivers have an interface that is unique to the hardware that they control; one native driver class will have a
completely different interface than another native driver class. This native interface provides for optimal
performance between the host server component (gwes) and the driver because the API is designed directly for
the hardware. Notice that native drivers are all user interface related, a key responsibility of the GWE.

The native device driver model was especially important in previous versions of the operating system because
GWE and Device ran in separate user processes. The native driver loading model allowed GWE to have fast
access to the drivers without having to cross a process boundary.

This illustration demonstrates both layered and monolithic architecture models for native drivers. Notice that
GWES is the entity at the top of the slide, native drivers are loaded directly by GWES.

Module 7 - Drivers 247

Stream drivers are loaded and managed by Device manager. The device manager requires each driver under its
control to implement a common interface defined by Device manager. Stream drivers can be written to control
any possible type of physical or virtual device, as long as it conforms to the stream driver interface required by
the device manager. This makes the device manager agnostic to the types of devices that it can support.
Stream drivers can be exposed as a special file system device. Stream drivers can be named and opened with a
CreateFile() call. The resulting handle can then be used to access the driver with regular file system APIs. The
file system recognizes the device name as belonging to the device manager, and forwards the access on to the
Device manager for proper handling.
Stream drivers have a flexible loading model. They can be loaded automatically at boot, or they can be load
dynamically, on demand.
This slide demonstrates layered and monolithic stream drivers. Notice they are loaded under Device Manager
– all drivers managed by Device manager are stream drivers and implement the required stream driver
interface.

Module 7 - Drivers 248

Module 7 - Drivers 249

Stream drivers can have names, and be accessed through file system handles. There are three different ways
to access a particular named driver, providing different capabilities and access rights to the caller. The legacy
device name is the original mechanism and is still supported by CE. The \$bus and \$device namespaces were
added to provide additional capability and eliminate some limitations of the legacy namespace. Any named
driver can be accessed using any of the three naming conventions, subject to some limitations.

Note that it is not necessary for all device drivers to have a named interface. A driver may provide a standalone
function that does not require it to export an interface to applications or other drivers, or it may provide some
other custom interface that does not utilize the file system interface.

Module 7 - Drivers 250

The legacy naming convention is a 3 letter prefix with a numeric suffix varying from 0-9, for example “COM1”.
This is the most common way of accessing a driver. It provides a normal file handle to the device that can be
used for normal IO operations. This namespace is limited to 10 devices with a single prefix. An implementation
that has more than 10 devices must either change the prefix or use the \$device namespace

Note that the Prefix (specified in the registry) must also be appended to the required stream driver entry points
unless a special registry flag is set.

Module 7 - Drivers 251

The device namespace is similar to the legacy namespace. Its primary advantage is its ability to support more
than 10 devices.

Module 7 - Drivers 252

The \$Bus namespace provides a mechanism for more sophisticated driver level control operations. This
mechanism is typically used in conjunction with bus/client drivers, where the bus driver performs various
operations on behalf of the client drivers. A handle returned using the \$bus namespace can have different
access permissions and capabilities than a normal handle. Microsoft provides bus drivers for the most
commonly used bus implementations.

Module 7 - Drivers 253

Note that XXX is replaced by the Prefix for the driver, e.g. COM. If the DEVFLAGS_NAKEDENTRIES flag is set in
the registry for this driver then the Prefix is eliminated (e.g. use Init instead of COM_Init).

XXX_Init() and XXX_Deinit() are required for all stream drivers.

XXX_Open() and XXX_Close() are required for all stream drivers that support a named interface. If you provide
a prefix entry in the registry section that loads this driver then your driver supports a named interface and
requires these functions.

The XXX_PreClose and XXX_PreDeinit are optional functions provided to solve potential race conditions due to
threads blocked in a driver. These functions provide a mechanism to separately invalidate handles and wake
sleeping threads before XXX_Close and XXX_Deinit are called.

XXX_PowerDown and XXX_PowerUp are optional functions called by the Device manager when the operating
system is entering and exiting its low power Suspend state. The OS is running in a limited mode when these
functions execute and the types of operations and system API calls available to these functions are limited.
Drivers that implement these functions should be careful to limit their scope to the minimum necessary to
change the power state of the device. These functions constitute the legacy driver power management
infrastructure. The Power Manager component provides more sophisticated (and complex) power
management leveraging the IOControl interface.

The XXX_IOControl function is the primary interface used by most drivers. Applications and other drivers use
the file handle returned by CreateFile in a call to DeviceIoControl along with a control code and driver specific
data structure to communicate with the driver. This interface provide great flexibility in performing driver
operations. Most drivers utilize this interface exclusively, and do not implement the Read/Write/Seek
functions. If they are not implemented, the corresponding Win32 call using the device handle will fail. At least
one of these functions or the IOControl function must be implemented for named devices.

Module 7 - Drivers 254

It’s very easy to implement a basic stream driver that can be accessed from an application. While there are a
number of infrastructure elements supported by the Device manager that could be implemented in a driver
such as power management, bus/client driver relationships etc, these advanced features are not required. The
only thing necessary to get the device manager to load a basic driver is to properly implement and expose the
required entry points. Then create the necessary registry keys that the Device manager needs to activate your
device and you have a functional driver.

Module 7 - Drivers 255

Drivers can run in either kernel mode or user mode. Kernel mode drivers run in the context of the kernel. User
mode drivers run in one or more user mode processes. Both user mode and kernel mode drivers are managed
by the Device manager (devmgr.dll).

Module 7 - Drivers 256

The Device manager loads all drivers into kernel space as kernel mode drivers unless the
DEVFLAGS_LOAD_AS_USERPROC flag is set in the registry. Kernel mode drivers provide the best performance
since they can call kernel APIs directly using the kernel version of coredll called k.coredll.dll. Kernel drivers can
synchronously access user buffers very quickly because user memory is directly available.

Kernel mode drivers must be robust because they have unlimited access to memory. A fault in a kernel mode
driver could corrupt kernel memory causing a system crash.

Module 7 - Drivers 257

Drivers are loaded into User mode when the DEVFLAGS_LOAD_AS_USERMODE flag is set in the registry. This
causes the driver to be loaded into a user mode driver host process called udevice.exe. This isolates the driver
from the rest of the system increasing overall stability at the expense of performance.
User mode drivers run in the context of a user mode process and are therefore restricted from calling kernel
only APIs (with some exceptions). In addition user mode drivers do not have access to kernel memory and
therefore have restrictions on the kinds of pointers and asynchronous memory accesses they can perform. As a
result drivers that must be able to run in either user mode or kernel mode must be written to comply with user
mode driver restrictions.

Module 7 - Drivers 258

Module 7 - Drivers 259

The User Mode Driver Framework is divided into two physical components. The first component is the User
Mode Driver Reflector, which resides inside the device manager. The second component is the User Mode
Driver Host, which is a user mode application that is launched and managed by the User Mode Driver Reflector.

When a driver is flagged as a User Mode Driver in the registry, the device manager will access the User Mode
Driver Reflector. The User Mode Driver Reflector launches the appropriate User Mode Driver Host process and
forwards I/O requests to it. The User Mode Driver Host process in turn forwards I/O requests to the User Mode
Driver.

The process of using a User Mode Driver begins with a user application or with a parent bus driver. User
applications and parent bus drivers can load User Mode Drivers by calling ActivateDevice or ActivateDeviceEx.
User applications and parent bus drivers can unload User Mode Drivers by calling DeactivateDevice. Once
loaded, any user application or driver can access the User Mode Driver by using the device handle.

If the driver is a User Mode Driver, the call to ActivateDevice or to ActivateDeviceEx will result in the device
manager calling the User Mode Driver Reflector function as well. A driver is recognized as a User Mode Driver
when the FLAGS value is set to the setting DEVFLAGS_LOAD_AS_USERPROC (0x10) in the registry key of the
device.

The User Mode Driver Reflector, which is aware of the original process and the destination process, uses
CeFsIoControl to forward the device manager's request to the User Mode Driver Host. The User Mode Driver
Host then parses the request to either load, unload, or call the parent bus driver's entry.

The User Mode Driver has restricted access rights to the hardware, which prevents it from being able to
accommodate requests such as mapping physical memory or calling interrupt functions. To accomplish these
types of requests, the User Mode Driver calls the User Mode Driver Reflector, and enables the User Mode
Driver Reflector to handle the request. The User Mode Driver Reflector then checks the user request against
the registry settings to determine whether it should perform the requested action. Unlike with interrupts and
the mapping of physical addresses, the User Mode Driver can, via the device handle and without the aid of the
User Mode Driver Reflector, access the parent bus driver regardless of where the parent bus driver is located.

Module 7: Device Driver Concepts 260

1. User App calls ActivateDevice(Ex) to Load UM Driver
(App can Call DeactivateDevice to unload the loaded UM Driver.)
Device Manager checks Registry Keys to find out if the driver is to be loaded in UM
2. Device Manager then creates a Reflector Service Object
Reflector Service then launches the UM Driver Host process with the Volume Name passed as an argument.
The UM Driver Host creates and mounts the specified Volume and registers a set of File System Volume APIs.
The call returns back to the reflector
The call returns back to the Device Manager
Device Manager then calls XXX_Init
Reflector forwards XXX_Init to the UM Host Process
UM Host Process parses request and loads the required driver and calls into XXX_Init entry of the loaded driver.
Loaded Driver returns back the Device Context to Device Manager
Device Manager creates a Handle associated with the returned Device Context and returns it to the User App.

Now the UM Driver is loaded and the User App can access it using normal Handle based APIs; CreateFile,
WriteFile, ReadFile, DeviceIoControl are all supported.

Module 7 - Drivers 261

The reflector service resides in the device manager and is the bridge between a calling application and the user
mode driver process. The reflector masks the difference between a user mode and kernel mode driver to other
user mode processes. A calling application or another driver does not know whether a particular driver is
running in kernel mode or user mode, thanks to the reflector service.
The reflector service also provides kernel support services to the user mode driver. The reflector (which runs in
the kernel) performs certain kernel mode only APIs on behalf of the user mode driver. This allows a user mode
driver to call certain kernel mode only APIs such as InterruptInitialize() and VirtualCopy() that would otherwise
be unavailable. The reflector validates these calls before making them, limiting their use to parameters that
are configured in the registry.

Module 7 - Drivers 262

This set of registry entries configures a driver to load into a specific user mode driver host process. Multiple
drivers can be loaded into the same user mode driver host by specifying the same UserProcGroup. If the
UserProcGroup is not specified, the user mode driver will load into its own independent process.

Module 7 - Drivers 263

Drivers must be properly fixed up to run in the correct memory location just like other dlls. Drivers that are
listed in the MODULES section will be fixed up in the image itself and must be properly specified in the bib file.
If the K flag is present the driver will be fixed up to run in kernel space. If it is absent the driver will be fixed up
to run in user space. The Q flag that allows dlls to be fixed up to both user and kernel space is irrelevant for
drivers.
Drivers can be included in the image via the FILES section of the BIB file. Drivers added in this fashion will be
fixed up by the loader at run time, can therefore be loaded into either kernel or user space.

Module 7 - Drivers 264

User mode drivers should not use embedded pointers. The user mode driver reflector will perform the
marshalling necessary for pointer parameters in function calls to be dereferenced. The reflector is not able to
marshal pointers embedded in a data structure so the user mode driver must do the marshalling. If the driver
is called by a kernel mode component the embedded pointer would point to a kernel address which the user
mode driver can’t access. The portable solution to this problem is to ensure that all data is passed into the
driver in a single flat structure that does not contain pointers.
User mode drivers should not be designed to implement asynchronous memory accesses to client buffers. The
reflector in the kernel will marshal the pointer parameter during the synchronous call but the buffer can’t be
marshaled for asynchronous access. User mode drivers can marshal embedded pointers for asynchronous use
themselves, but only if they point to user address space (see above for embedded pointers to kernel space).

Module 7 - Drivers 265

User mode drivers generally can’t access kernel mode only APIs. There are exceptions for APIs that are
required for all device drivers, and these APIs are supported by the reflector in the User Mode driver
framework. Drivers that must run in user mode need to ensure they don’t call off limits APIs, and ensure the
proper registry entries are in place to allow the reflector to validate other calls.
There are some drivers that must run in kernel mode. These include display and networking drivers, among
others. These components have frameworks that can’t be used with the user mode driver restrictions. This
restriction limits the number of drivers that can be run in user mode.

Module 7 - Drivers 266

http://msdn2.microsoft.com/en-us/library/aa915093.aspx

The following list shows the process for displaying a UI from a kernel-mode device driver:

1. A user-mode application makes a call into a kernel-mode driver.
2. While the kernel-mode driver is running, the kernel-mode driver requires input from the user.
3. The kernel-mode driver calls CeCallUserProc to load the UI proxy device driver.
4. The kernel-mode function translates the call into an I/O control code call and forwards the call to the UI
proxy device driver, which is hosted in udevice.exe.
5. The UI proxy device driver does the following:

Loads the UI proxy device driver that was passed to the CeCallUserProc function.
Calls the entry point for the UI proxy device driver.
Passes the UI proxy device driver data to the entry point.
Returns the UI proxy device driver data back to the caller.

6. The UI proxy device driver data is then marshaled back to the kernel, and the call returns to the kernel-mode
device driver.

Module 7 - Drivers 267

Module 7 - Drivers 268

These terms are discussed in more detail on MSDN:
http://msdn2.microsoft.com/en-us/library/aa931071.aspx

The Windows Embedded CE driver model has changed for Windows Embedded CE 6.0. In Windows CE 5.0 and
earlier, drivers ran in the Device.exe process. In Windows Embedded CE 6.0, drivers run in the NK.exe process.
Due to the updated driver model, Windows CE 5.0 and earlier compatible drivers should be modified in order
to work properly with Windows Embedded CE 6.0. Stability and security are also extremely important for
drivers, as an instable driver in Windows Embedded CE 6.0 can potentially cause the OS to fail.
In Windows Embedded CE 6.0, the kernel process receives the top 2 GB of virtual memory space, while the
remaining 2 GB is allocated for all other processes. The virtual memory for each process is not available at all
times. Instead, only the kernel process along with any current processes are accessible.

Module 7 - Drivers 269

Windows CE 5.0 and earlier, MapCallerPtr was used to validate a region of memory pointed to by a pointer
parameter. MapCallerPtr was used in the I/O controls (IOCTLs) for a driver to validate a pointer parameter
passed by a calling process. Device drivers in Windows CE 5.0 ran with a relatively high privilege, and had
adequate access to memory. MapCallerPtr was used to verify both pointer parameters as well as embedded
pointers.

In Windows CE 5.0 and earlier, MapPtrToProcess was used by a device driver to gain access to the data in the
address space of an application.

In Windows Embedded CE 6.0, the kernel performs a full access check on buffer pointer parameters. This takes
the responsibility for pointer parameter validation away from a device driver. However, a driver still must verify
that the caller has access to memory addressed by embedded pointers.

It is possible for a malicious application to pass an embedded pointer to a kernel address space and have a
driver read or write to the buffer, potentially modifying the kernel. A driver must use the CeOpenCallerBuffer
and CeCloseCallerBuffer functions to verify that the caller has access to the memory that is pointed to by
embedded pointers.

CeOpenCallerBuffer can be called with the ForceDuplicate parameter set to TRUE. This allocates a temporary
heap buffer in the current process. If you choose to copy an input buffer for security purposes, and use
CeOpenCallerBuffer for access checking, you can set ForceDuplicate to TRUE. This allows you to perform both
the input buffer copy and the access check with one function call.
*/

Module 7 - Drivers 270

In Windows CE 5.0 and earlier, the MapCallerPtrfunction also performed marshalling for pointers. A driver
called MapCallerPtr on parameters as well as embedded pointers both for validation and marshalling.

In Windows Embedded CE 6.0, marshalling is dependent on if a pointer is used synchronously or
asynchronously. If a pointer parameter or embedded pointer is used synchronously, the address space of the
calling process is accessible for the duration of a call into the driver. This eliminates any requirements for
marshalling. The pointer of the calling process can be used unchanged by the driver, which can then access the
memory of the caller directly. This method of marshalling is referred to as direct access.

However, if a pointer is used asynchronously, it is critical that the caller buffer is accessible when the caller's
address space is unavailable. This means that direct access is not possible for any kind of asynchronous work
after the call has returned. Windows Embedded CE 6.0 includes the CeAllocAsynchronousBuffer and
CeFreeAsynchronousBuffer functions for drivers to marshal pointer parameters and embedded pointers when
asynchronous access is required. For example, when a thread such as the IST requires access to the buffer of
the caller, the marshalling helper functions can choose between the duplication and aliasing marshalling
mechanisms. This is dependant on the size of the buffer involved. If the buffer is small enough, the kernel
duplicates the buffer. However, this can affect performance, and if the buffer is too large to duplicate, the
kernel will alias the buffer instead.

Module 7 - Drivers 271

Module 7 - Drivers 272

Performing a secure copy of input parameters is one of the best practices for developing a device driver for
Windows Embedded CE. It is not necessarily safe for a driver to access the buffer of a caller. It is possible that
the caller may be malicious, or even written poorly. The solution to these data integrity problems is to perform
a secure copy. If a driver must access the buffer of a caller asynchronously, it must call the
CeAllocAsynchronousBuffer and CeFreeAsynchronousBuffer functions. This eliminates the need to perform an
additional parameter copy. If a driver is accessing parameters synchronously, you should use the
CeAllocDuplicateBuffer and CeFreeDuplicateBuffer secure copy helper functions to copy the buffer of the
caller.

If you are handling embedded pointers and calling the CeOpenCallerBuffer function for access checking, set the
ForceDuplicate parameter to TRUE to obtain a local copy of the buffer of the caller. This allows you to avoid an
additional function call to CeAllocDuplicateBuffer. The local buffer is then freed upon calling
CeCloseCallerBuffer.

Module 7 - Drivers 273

Module 7 - Drivers 274

Module 7 - Drivers 275

Module 7 - Drivers 276

Module 7 - Drivers 277

Stream drivers are loaded via a call to ActivateDeviceEx(). This function takes a handle to a registry key as a
parameter. The registry key contains all the information necessary to configure and load the driver.
CE 6.0 supports both automatic driver loading at boot and dynamic driver loading on demand. This provides
support for Plug and Play buses, and allows drivers to be unloaded as needed.

Module 7 - Drivers 278

There are many different registry settings that control how a driver loads. Most are optional. Some registry
settings are used by the Device manager and can be optionally used by all drivers. Custom registry entries can
also be added that are referenced directly by the driver itself after it loads.

DLL is a string value that specifies the dll name to load. This value is required.
Prefix is a three character string that is makes up the name of the driver. This value must be present in order to
have a file handle based interface to the driver. The Prefix value is the same value that must be used in the
stream driver entry points unless the DEVFLAGS_NAKEDENTRIES flag is set.
Order is a dword value that provides a mechanism supporting load order dependencies. Drivers will be loaded
in the order specified by the Order key. If this key does not exist the driver will be loaded at the end. Order
should not be used unless there is a load order dependency to resolve.
Index is a dword value that makes up the numeric portion of the device name. This value is optional; the
Device manager will pick the next sequential value if it does not exist.
IClass provides a mechanism to advertise capabilities to various system components.
Flags provides a mechanism to control the way the driver is loaded.

Module 7 - Drivers 279

There are a number of loading options supported by the Device manager in the ActivateDeviceEx() call. These
options are governed by the Flags value in the driver loading key. The default option if no Flag parameter exists
is none. Some of the more common flags include:
DEVFLAGS_BOOTPHASE_1
This flag indicates that the driver should be loaded during the first boot phase only in hive registry systems that
have multiple boot phases. This flag is used in drivers that exist in the both the boot hive and the system hive,
and prevent the driver from being loaded twice.
DEVFLAGS_NAKEDENTRIES
This flag indicates that the driver does not implement the three letter prefix in its stream driver exports. This
allows the same driver to be used with different named prefixes, no need to recompile the driver.
DEVFLAGS_LOAD_AS_USERPROC
This flag causes Device manager to load the driver into user space. The default is to load all drivers as kernel
mode dlls unless this flag is set. This is new functionality in CE6.

Module 7 - Drivers 280

InterfaceType and BusNumber are not used by Device manager in the ActivateDeviceEx call. Rather they are
used by the driver itself to determine how the corresponding device interfaces in the system.

Module 7 - Drivers 281

These parameters indicate the memory and IO requirements of a particular device. The values are relative to
the bus where the device resides. These values may be configured by the OEM for built in devices, or they
might be populated by a bus driver in a Plug and Play bus such as PCI.

The driver can easily retrieve this information along with bus information from the registry using the
DDKReg_GetWindowInfo() helper function. These bus relative addresses can then be mapped into virtual
addresses usable by the driver with the BusTransBusAddrToVirtual() helper function.

Module 7 - Drivers 282

These optional registry entries provide interrupt related configuration data for a particular driver. Typically a
driver would use the Sysintr value directly if it exists in the registry. Otherwise it will request a new sysintr
using the Irq value, if the Irq value exists. Drivers that use installable interrupt handlers use the IsrDll and
IsrHandler entries to specify the installable interrupt handler.

These values can easily be retrieved by the driver using the DDKReg_GetIsrInfo() helper function.

These registry entries are not required, but they are a good practice that allows the driver to be more portable.

Module 7 - Drivers 283

A bus driver is any software that loads drivers. Bus drivers have one or more of these responsibilities:
Managing physical busses, such as PC Card, USB, or PCI.
Loading drivers on a physical bus that the bus driver does not directly manage. An example is the Bus
Enumerator, which is a bus driver that loads built-in drivers and PCI bus drivers.
Calling ActivateDeviceEx directly to load a device driver. The loaded device driver might manage hardware
indirectly through another device driver.

Module 7 - Drivers 284

The bus enumerator is a bus driver loaded with a call to ActivateDeviceEx(). The bus enumerator calls
ActivateDeviceEx() for each registry subkey directly below the key that activated the bus driver, and does not
traverse deeper into the registry. The bus enumerator is the initial driver loaded directly by Device manager,
and eventually causes all other drivers to be loaded.

Module 7 - Drivers 285

The driver loading process starts with the Device manager reading the registry key at HKLM\Drivers to obtain
the root path for driver loading. It then calls ActivateDeviceEx() on that key. The driver located at that key is
typically the Bus Enumerator driver. Its responsibility is to serve as a bus driver for subkeys directly below it. In
the typical example shown above this means that everything directly under the HKLM\Drivers\BuiltIn key will
be automatically loaded at boot by BusEnum.dll. These drivers are typically referred to as “Built in” drivers.
Built in drivers often include other bus drivers such as PCI, USB etc that each manage their own buses

Module 7 - Drivers 286

Here is an example of a “built in” driver. This driver will be automatically loaded at boot by the Bus Enumerator
driver.
Note that the registry configuration for many drivers will not be as simple as this example. Drivers will often
have other required configuration parameters especially if they reside on a bus. Therefore it is important to
check the documentation for the driver to determine the required configuration parameters.

Module 7 - Drivers 287

Module 7 - Drivers 288

There are several basic debugging techniques that can assist in debugging device drivers. The most important
step is to ensure that KITL is available on your device. The KITL transport is required in order to use the kernel
debugger and target control utility, and it can be used as the communications transport for all the other
remote tools.

Do a debug build of the operating system. A debug build does two things: disables compiler optimizations, and
sets the DEBUG define. Compiler optimizations make the kernel debugger less useful because the source code
no longer matches the compiled output. This makes breakpoints behave erratically, many variables can’t be
resolved etc. Nothing wrong with the debugger, the compiler has just optimized the code into a form that is
different from what appears in source. The DEBUG define is used by a number of debugging macros, namely
DEBUGMSG. A debug build will produce many more messages because the DEBUGMSG macro is utilized.

Use the kernel debugger to set breakpoints, view the call stack, watch local variables etc. Note that the kernel
debugger is a component that can be included in the image (IMGNODEBUGGER not set). A debug build does
not necessarily include the kernel debugger (although it does by default).

Use the DEBUGMSG macro in your driver to output appropriate diagnostic messages. Use the debug zones
capability to filter the output. Understand that debug messages take time, and can impact the functionality of
a bandwidth sensitive driver (USB, audio).

Module 7 - Drivers 289

There are a number of techniques you can use to reduce the turn around time in the debug cycle. Use targeted
builds effectively; there is no need to rebuild the entire BSP because you made a change to driver source code
in the BSP. Even worse, there is no need to rerun the sysgen cycle on the OS Design. If you are modifying code
in the Public tree, you would need to build and sysgen the Public tree – but you should never modify code in
the Public tree. A new operating system image can be made with the driver change by rebuilding the driver,
ensuring it is in the flat release directory, and making the run time image again.

A further improvement can be made by loading the driver directly from the flat release directory instead of the
operating system image. This eliminates the need to rebuild the operating system image (make run time
image) after a driver change. This can be accomplished by adding the driver to the list of modules in the
Target->Release Directory Modules dialog box.

Module 7 - Drivers 290

Another technique that can be used when debugging drivers is to use a debug version of the driver with a
Release build of the operating system. This results in a much smaller operating system image with
performance characteristics that are more representative of the real world. The operating system boots much
faster, resulting in better turn around times. The driver has been built with the debug settings, meaning
optimizations are turned off for better a better debugger experience and debug messages are enabled.

This method requires both debug and Release builds to be performed. Copy the driver binary and supporting
files (.pdb, .map. etc) to the flat release directory replacing the Release version. The driver can be built directly
into the image, or loaded from the flat release directory.

Module 7 - Drivers 291

Module 7 - Drivers 292

Release builds are difficult to debug effectively with the kernel debugger. The debugger operates on the actual
code output from the compiler, not the original source code. The compiler optimizations that are present in a
release build cause the compiled output to differ significantly from the original source code. For example, the
underlying code sequence is rearranged for better performance, and local variables are often optimized away.
This is not apparent when viewing the source code in the IDE and causes confusion when using the debugger.
The debugger is unable to resolve many local variables (because they don’t actually exist), appears to step
through source code erratically and breaks at unexpected times (because the compiler output doesn’t match
what is visible in the source code window).
This can be resolved by using a debug build for the module being debugged. Compiler optimizations are
disabled in a debug build, so the assembled output matches the high level language source code. Another
technique is to switch to the disassembly view, which is what the debugger is actually using. This is much more
difficult to use, but is sometimes necessary to see what is really going on.

Module 7 - Drivers 293

Module 7 - Drivers 294

Module 7 - Drivers 295

Module 7 - Drivers 296

Module 7 - Drivers 297

DEBUGREGISTER allows debug zones to be controlled dynamically.

Module 7 - Drivers 298

Module 7 - Drivers 299

Module 7 - Drivers 300

Module 8 - Customizing the OS Design 301

Module 8 - Customizing the OS Design 302

Module 8 - Customizing the OS Design 303

Module 8 - Customizing the OS Design 304

The items that the Catalog contains range from BSPs, core operating system (OS) functionality, transport layers,
to device drivers. You can also display additional items, which you or a third party create, in the Catalog by
importing information about the items in Catalog item (.pbcxml) files.

The catalog contains sub folders that contain items. Each item is either a module or component of a module
that you can select to include in the run-time image.

You can import and export XML Catalog files to add third party items.

The Catalog Items View shows all the Catalog items that you can add to the OS Design, including BSPs, core
operating system (OS) functionality, transport layers, and device drivers. You can also use filters to display only
the Catalog items that are included in your OS Design.

To determine which Catalog items are included in an OS Design, choose Filter, and then User-selected Catalog
Items and Dependencies. View the Catalog items in your OS Design by expanding the nodes in the Catalog item
tree.

Check Boxes are user added items, in this case the CE test Kit - CETK
Green squares show system that the items was added to support an other item.
We will see how you can view these dependencies.

If the Catalog Items View is not visible select Catalog Items View from the Other Windows Menu Item under the
View Menu.

Module 8 - Customizing the OS Design 305

Module 8 - Customizing the OS Design 306

A Catalog item is specifically included in the OS Design by a design template or by the OS developer. A Catalog
item might also be added during the build cycle if it is a dependency of another item.
The Cesysgen.bat file controls additional batch files, which contain dependency rules that the build system
compares against the items in your OS Design. The IDE tools automatically include additional Catalog items that
are required to support the Catalog items initially included in the OS Design.
Each time you add or remove a Catalog item from your OS Design, or perform any other action that requires a
Sysgen of the OS Design, the display of Catalog items is refreshed. The Build tab in the Output window also
displays a list of Catalog items added due to dependencies.
Each time this process is run, the system starts with only required Catalog item functionality and no dependent
items.

The properties of catalog items will vary based on the context of the item selected.

Module 8 - Customizing the OS Design 307

Catalog View - Catalog Dependencies
You can visually determine dependencies, by right clicking on a item in the catalog view and selecting Reasons
for Inclusion of Item.

Note: This functionality is for system included items only.

Build Process - Catalog Dependencies
During the build, Platform Builder runs Cesysgen.bat to discover which Catalog items to bring in by
dependency. Through examining Cesysgen.bat, which specifies Catalog item dependencies, you can discover
which Catalog items depend on a selected Catalog item to function properly. For more information, examine
the Cesysgen Batch File.

In the following example of a Catalog item dependency, if your OS Design has SYSGEN_MODEM set, it brings in
SYSGEN_PPP.
if "%SYSGEN_MODEM%"=="1" set SYSGEN_PPP=1

Module 8 - Customizing the OS Design 308

You can use the Catalog Editor to view and edit Windows Embedded CE 6.0 Catalog item (.pbcxml) files, which
are XML-based files that contain metadata about the associated Catalog item.

In Windows Explorer, when you choose to open a .pbcxml file, Windows Embedded CE 6.0 opens the Catalog
Editor. The visual interface is much like that of other Visual Studio editors and components.

Module 8 - Customizing the OS Design 309

You can use the Catalog Editor to view and edit Windows Embedded CE 6.0 Catalog item (.pbcxml) files, which
are XML-based files that contain metadata about the associated Catalog item.

In Windows Explorer, when you choose to open a .pbcxml file, Windows Embedded CE 6.0 opens the Catalog
Editor. The visual interface is much like that of other Visual Studio editors and components.

Compatibility - To modify the supported CPUs for the Catalog item, enter the CPUs that you want to support in
the Supported CPU field. By default, this field is empty. Specifying a CPU means that your Catalog item is
supported by only the BSPs that support the same CPU.
General - If you want to include Help for your Catalog item, enter the link for the Help associated with the
Catalog item in the Help Link field. The two size items are related to proving a size estimate in bytes for your
catalog.
Identification - Comment and Description are optional and non essential but can be handy.
To modify the friendly name displayed in the Catalog, enter the Catalog item name that you want to use in the
Title field.
To modify the unique ID associated with the Catalog item in the Catalog, enter the ID string that you want to
use. Note: It is recommended that you use an ID string that begins with the Catalog record type and the
vendor name to avoid Catalog collisions. For Catalog items, this uses the format
Item:DefaultVendor:DefaultItemName.
Additional Variables - You can specify additional variables for the sysgen of this item using this item.
Modules – Specify the name of the item that will implement functionality such as BarCodeSCanner1.DLL.
Notifications can be used to provide information to the user when the item is added to the catalog.
Source Code Link: In the Properties pane of the Catalog Editor, you can view and modify the default name and
path properties of the source code link. To edit the name that is displayed, enter a friendly name for the source
code path in the Title field. To edit the path for the source code link, enter the directory path or browse to the
source code for the selected Catalog item in the Path field.
Location - Related to where the catalog item will appear in the catalog view.
Projects - One or more projects can be included with the catalog item

Module 8 - Customizing the OS Design 310

You can use the Catalog Editor to view and edit Windows Embedded CE 6.0 Catalog item (.pbcxml) files, which
are XML-based files that contain metadata about the associated Catalog item.

In Windows Explorer, when you choose to open a .pbcxml file, Windows Embedded CE 6.0 opens the Catalog
Editor. The visual interface is much like that of other Visual Studio editors and components.

Module 8 - Customizing the OS Design 311

Typically the public and platform common paths are reserved for Microsoft.

Module 8 - Customizing the OS Design 312

Using independent XML files allows the catalog file to be managed by source control tools such as Microsoft
Visual Source Safe.

Module 8 - Customizing the OS Design 313

You can use the “Validate” item in the catalog editor to look for any issues. Use the tabbed dialog to look for
any warnings as well as resolve any errors before moving on.

Module 8 - Customizing the OS Design 314

Module 8 - Customizing the OS Design 315

Module 8 - Customizing the OS Design 316

Module 8 - Customizing the OS Design 317

Command Processor Shell - Includes an application for a command-line-driven shell that provides console input
and output and a limited number of commands. This functionality is also available on headless OS Designs.

The Standard Shell - Provides a shell that is similar to the shell on the Windows-based desktop operating
systems. The source code for this shell is available for customization. %_WINCEROOT%\Public\Shell\OAK\HPC

Thin Client Shell - The Windows Thin Client design template provides the starting point for remote-desktop
terminals through support for Microsoft RDP or other terminal software. Formerly known as Windows-based
Terminal (WBT), the Windows Thin Client is a minimal version of Windows Embedded CE that includes the
Catalog items necessary to support a Remote Desktop device — including a constrained shell and Microsoft
RDP.

Module 8 - Customizing the OS Design 318

Windows Embedded CE allows you to implement a wide variety of shells from simple command line interfaces
to fully customized graphical user interfaces adapted for your target device. A Windows Embedded CE shell
consists of modules and components that each provide a specific area of shell functionality.

Module 8 - Customizing the OS Design 319

For many target devices, including those without a display, Windows Embedded CE includes a Command
Processor shell that is similar to Command.com in Microsoft® Windows® 95 and Cmd.exe in Microsoft Windows
NT®. It is a command-line-driven shell that provides a limited number of commands. To implement the
Command Processor in an OS Design, include the Cmd and Console components in the Cesysgen.bat file.
To use the Command Processor shell as a command-line interface for target devices with no displays, configure
the Command Processor to operate over a serial port.

The following example shows how to set the registry values to allow the Command Processor to operate over a
serial port.

[HKEY_LOCAL_MACHINE\Drivers\Console]
OutputTo = REG_DWORD:1 // Redirects CMD to COM1
COMSpeed = REG_DWORD:19200 // Speed of serial connection

Module 8 - Customizing the OS Design 320

TaskMan is a full-screen desktop window and a zero-height taskbar window that are registered with the
Graphics, Windowing, and Events Subsystem (GWES) so that certain windows can be hidden behind the
desktop. Shortcut keys, such as ALT+TAB, CTRL+ESC, and CTRL+ALT+BACKSPACE, are sent to the taskbar
window.

A Task Manager window that lists all of the running top-level windows and enables a user to switch to or stop
an application. The shortcut keys ALT+TAB, CTRL+ESC, and CTRL+ALT+BACKSPACE invoke the Task Manager
window.

A Run button that enables a user to launch a file is also part of TaskMan.

Module 8 - Customizing the OS Design 321

Often you will not want your device to look like a standard Windows interface with at toolbar at the bottom of
the screen and a bunch of icons on the desktop. A custom shell will allow you to make the GUI look like
anything you want.

Module 8 - Customizing the OS Design 322

Module 8 - Customizing the OS Design 323

Whenever a process is loaded by these launch keys it is given a command line parameter that is some token
that is ultimately a string that is converted to an integer and used in a call to a function called SignalStarted.
So in this example it takes the command line converts it from a Unicode string into an integer and calls
SignalStarted.

SignalStarted
This function must be called by all applications that the kernel starts at startup through the
HKEY_LOCAL_MACHINE\Init registry key.
The system passes the application its sequence identifier character string on the command line of the WinMain
entry point.
Note The command line cannot be used to pass any information other than the sequence identifier. If an
application must have information passed to it during boot, it can read the information from the registry or
from a configuration file. When the application has finished initialization, it converts the string to a DWORD and
passes it to SignalStarted. If SignalStarted is not called by such an application, other applications that are
dependent on its launch will never run. If SignalStarted is called but the application does not run at startup,
system operation will not be affected.

Module 8 - Customizing the OS Design 324

Module 8 - Customizing the OS Design 325

Module 8 - Customizing the OS Design 326

This code shows one approach to running a “TouchCalibrate” program only once.

Module 8 - Customizing the OS Design 327

Module 8 - Customizing the OS Design 328

An SDK is a set of headers, libraries, connectivity files, run-time files, OS Design extensions, and Help
documentation that developers use to write applications for a specific OS Design. The contents of an SDK allow
developers to create and debug an application on the run-time image built from your OS Design.

You can use Platform Builder to develop an SDK based on your custom OS Design for installation on another
development workstation. You should rebuild the runtime image and then build the SDK when you make
changes to your OS Design.

During the SDK development process, Platform Builder tracks the core OS modules that belong to an OS Design,
eliminating the need for you to describe the modules and components containing the technologies that the
associated SDK should support. Instead, Platform Builder includes the headers and libraries associated with the
modules and components in your OS Design in your SDK.

If you include a technology in your SDK that your OS Design does not support, a run-time error occurs when
someone attempts to access that technology in the IDE.

You can only use Windows Embedded CE 6.0 SDKs with Microsoft Visual Studio® 2005 SP1 or greater to create,
debug, and run custom applications.

Module 8 - Customizing the OS Design 329

Platform Builder can be used to build an SDK specific to an OS Design. By providing an SDK that is specific to
your OS Design, you can accurately present to the application developer all of the capabilities and limitations of
your OS Design. Other SDKs might not support all functionality supported by your OS Design, or they might
support functionality that is not included in your OS Design.

Product name - Name exposed to OS during installations and uninstalls.
Company name - Name of your company.
Company Web site - Web site for your company.
Product version - Versioning to allow the installer to compare differing installations.
MSI Folder Path - Fully qualified path name for the location of the .msi file your users will run to install the SDK.
MSI File Name - Name of the installer program.
Locale - The locale you want to use for the user interface language.

After you create an SDK for an OS Design, you can add files to the SDK by choosing Additional Folders on the
SDK Properties Page.

When you use Platform Builder to configure and build an SDK, the result is a MSI package. This package
contains information required to install or uninstall an SDK, using the Windows Installer. The Installer
automates the SDK installation process. During this process, it creates an entry for the SDK in the Add or
Remove Programs dialog box under Control Panel on your development workstation. This allows a developer
who installed your SDK to later remove it in a straightforward manner.

The MSI file can be moved and has a straight forward, click next install. You can over ride the install directory if
so desired.

Customizing the OS Design 330

An SDK is a set of headers, libraries, connectivity files, run-time files, OS design extensions, and Help
documentation that developers use to write applications for a specific OS design. The contents of an SDK allow
developers to create and debug an application on the run-time image built from your OS design.

You can use Platform Builder to develop an SDK based on your custom OS design for installation on another
development workstation. You should rebuild the runtime image and then build the SDK when you make
changes to your OS design.

During the SDK development process, Platform Builder tracks the core OS modules that belong to an OS design,
eliminating the need for you to describe the modules and components containing the technologies that the
associated SDK should support. Instead, Platform Builder includes the headers and libraries associated with the
modules and components in your OS design in your SDK.

If you include a technology in your SDK that your OS design does not support, a run-time error occurs when
someone attempts to access that technology in the IDE.

You can only use Windows Embedded CE 6.0 SDKs with Microsoft Visual Studio® 2005 SP1 or greater to create,
debug, and run custom applications.

Customizing the OS Design 331

As a developer of a Microsoft® Windows® CE–based OS design, you can provide an application developer with
the information necessary to develop an application specifically for your OS design. You can use Microsoft
Platform Builder to generate a software development kit (SDK) for your OS design.

An SDK supports the functionality that you include in your OS design. By providing an SDK that is specific to
your OS design, you can accurately present to the application developer all of the capabilities and limitations of
your OS design. Other SDKs might not support all functionality supported by your OS design, or they might
support functionality that is not included in your OS design.

Customizing the OS Design 332

Product name - Name exposed to OS during installations and uninstalls.
Company name - Name of your company.
Company Web site - Web site for your company.
Product version - Versioning to allow the installer to compare differing installations, using the format
00.00.0000.

Customizing the OS Design 333

This category of the SDK Tool Property Pages Dialog Box enables you to configure installation properties for the
SDK.

MSI Folder Path - Fully qualified path name for the location of the .msi file your users will run to install the SDK.

MSI File Name - Name of the installer program

Locale - The locale you want to use for the user interface language.

Customizing the OS Design 334

CPU Family
This category of the SDK Tool Property Pages Dialog Box enables you to select the CPU family OS configurations
that you want your SDK to support installation properties for the SDK. The CPU families listed on this page are
derived from the CPU families selected during Platform Builder setup. Check the box next to the CPU family for
each OS configuration you want your SDK to support.

Customizing the OS Design 335

After you create an SDK for an OS Design, you can add files to the SDK by choosing Additional Folders on the
SDK Properties Page.

Customizing the OS Design 336

When you use Platform Builder to configure and build an SDK, the result is a Microsoft® Windows® Installer
(MSI) package. This package contains information required to install or uninstall an SDK, using the Windows
Installer. The Installer automates the SDK installation process. During this process, it creates an entry for the
SDK in the Add or Remove Programs dialog box under Control Panel on your development workstation. This
allows a developer who installed your SDK to later remove it in a straightforward manner.

Customizing the OS Design 337

The MSI file can be moved and has a straight forward, click next install. You can over ride the install directory if
so desired.

Module 8 - Customizing the OS Design 338

Module 8 - Customizing the OS Design 339

Module 0 - Introduction 340

Module 9 - Application Development 341

Module 9 - Application Development 342

Module 9 - Application Development 343

Module 9 - Application Development 344

http://msdn2.microsoft.com/en-us/library/aa907963.aspx

Application Development 345

Module 9 - Application Development 346

Module 9 - Application Development 347

Module 9 - Application Development 348

Module 9 - Application Development 349

The choice on CE between Native and Managed is parallel to the choice you would make on a desktop.

If the managed application uses device specific functionality not available in the desktop Framework (Such as
phone call management etc...) then it will not run on the desktop as there are no corresponding libraries for
that.

Managed applications access the services exposed by the Compact Framework, however, they can "escape" the
framework using Platform Invoke (P/Invoke) to call native APIs.

Be aware that the Compact Framework has background threads, such as garbage collection, that can impact
the (RTOS) Real Time Operating System behavior. Be sure and assess the impact of that behavior on your
applications with the specific device architecture that you are working with.

Module 9 - Application Development 350

The .NET Compact Framework is a subset of the full size desktop framework. The .NET Compact Framework is a
hardware-independent program execution environment for secure downloadable applications optimized for
resource-constrained computing target devices. It offers a choice of languages, initially Microsoft Visual Basic
and Microsoft Visual C#, and eliminates some of the common problems faced with language interoperability.

Module 9 - Application Development 351

Module 9 - Application Development 352

Module 10 - Testing and Verification 353

Module 10 - Testing and Verification 354

Module 10 - Testing and Verification 355

Module 10 - Testing and Verification 356

The Windows Embedded CE 6.0 Test Kit (CETK) is a tool that you can use to test device drivers that you develop
for the Windows Embedded CE operating system (OS). The CETK incorporates a collection of tests into a
graphical user interface (GUI) harness. The test tools in the CETK support the CPUs and hardware platforms that
Windows Embedded CE supports.
These tools can also be called via the command line for the automated execution of custom test suites. CETK is
used internally at Microsoft to test platforms and drivers
CETK can be setup to be a fast, automated way of running tests and verifying the stability and reliability of a
device and drivers through out a project.
CETK is included with Platform Builder, nothing else to download or purchase and is also available as
standalone download.
The CETK server UI is launched from the start menu under Programs\Windows Embedded CE Platform Builder
after the in-product tests are added to the catalog of your project.

The device/host connection can be through KITL, ActiveSync, or Sockets. If a connection can’t be established via
the previously mentioned options, then you could copy appropriate test binaries and run manually via
command line or shortcuts. CETK ships with a set of tests that can be used to test third-party drivers for
Windows Embedded CE.

CETK can be used for:
Testing Device Drivers
Application testing
Stress Testing
Performance Testing

Module 10 - Testing and Verification 357

The CETK client can connect to any machine running the CETK server. Any device can be a CETK client by
downloading clientside.exe to the device.

Module 10 - Testing and Verification 358

Clientside.exe is used to communicate with the desktop CETK server. It launches TUX.EXE with the command
line options specified from the desktop Server UI. It is possible to load TUX.EXE in a stand-alone fashion without
the use of the remote server. Microsoft provides a number of TUX test DLLs for testing common drivers and
aspects of the system. You can also create your own TUX test DLLs for custom drivers.

Module 10 - Testing and Verification 359

Module 10 - Testing and Verification 360

The help system provides more information about each test and the corresponding command line parameters.
The exclamation indicates that a test MAY not be available.

Module 10 - Testing and Verification 361

Device Side Software
The device side of CETK is called Clientside.exe. Clientside.exe is a small application that is responsible for
calling to the host computer to establish a connection, device detection, launching tests, and sending back the
results to the host.

Module 10 - Testing and Verification 362

Module 10 - Testing and Verification 363

Module 10 - Testing and Verification 364

Module 10 - Testing and Verification 365

Module 10 - Testing and Verification 366

Module 10 - Testing and Verification 367

You can install source code for CETK tests by installing Windows Embedded CE Shared Source from the Setup
wizard for Windows Embedded CE. Test source code will be placed in the Private tree under the Tests
directory.

Module 10 - Testing and Verification 368

Module 10 - Testing and Verification 369

Module 10 - Testing and Verification 370

Module 10 - Testing and Verification 371

Module 10 - Testing and Verification 372

Module 10 - Testing and Verification 373

Module 10 - Testing and Verification 374

Module 10 - Testing and Verification 375

Module 10 - Testing and Verification 376

When using Application Verifier, all the functionality and paths on the application should be exercised to
uncover any leaks.

Module 10 - Testing and Verification 377

The CPU Monitor tool shows you the CPU and memory usage of a Windows Embedded CE–based device in the
CPU Monitor for Windows Embedded CE window. The target device sends data through a network connection
to the development workstation. The development workstation logs and displays the data in a graph and a list
in the CPU Monitor for Windows Embedded CE window.

You can run the CPU Monitor tool by itself or you can run the tool from the Windows Embedded CE 6.0 Test Kit
(CETK) window. Prior to running the CPU Monitor tool, you must install the Microsoft .NET Framework on the
development workstation. You can download the .NET Framework from Microsoft Windows Update or from
MSDN, the Microsoft developer program website.
To run the CPU Monitor tool from the CETK window
Add support for the CETK to the Windows Embedded CE operating system (OS) for the target device.
Connect the target device to the CETK.
Click on Tools, Windows Embedded CE Test Kit.
In the CETK window, right-click on the target device from which you want to view CPU and memory usage
information, choose Tools, and then choose CPU Monitor.

The CPU Monitor tool receives data on port 8000 of the development workstation. You cannot change the port
number over which the CPU Monitor tool receives data at this point in time.

You can save the data collected by the CPU Monitor tool in an XML file. The XML file includes the XML schema
and data in XML format. You can use the DataTable object from Microsoft Visual Studio to read the XML file.

Module 10 - Testing and Verification 378

Module 10 - Testing and Verification 379

The Modular Stress harness controls the environment in which the modules operate, you can control:
Module “mix”
Number of concurrent modules
Module lifespan

Modular Stress harness monitors the stress run and collects and reports data:
Individual module test case results
System memory state
Hang detection

Best Practice – “Testing the Test”
As a recommended best practice you may want to run a generic platform with out any customization to assure
your self that the modular stress test runs with out issues. If a stress test fails on it’s own in your environment
then that needs to be fixed as a starting point. After it will run as long as you need it to you can then add in
your customized DLLS and apps. If a failure occurs then, it is likely due to you code not the functionality of the
test in your environment.

Module 10 - Testing and Verification 380

Cescript.exe:
http://msdn2.microsoft.com/en-us/library/aa934625.aspx

Cescript.exe supports Microsoft Jscript and Microsoft VBScript programming language.

Prt_scrn.exe:
http://msdn2.microsoft.com/en-us/library/aa934067.aspx

Module 10 - Testing and Verification 381

Module 10 - Testing and Verification 382

Appendix: Licensing and Developer Resources 383

Appendix: Licensing and Developer Resources 384

Appendix: Licensing and Developer Resources 385

The licensing process begins with getting a free Platform Builder Toolkit Evaluation from an Embedded
Authorized Distributor, this is followed by a purchase of he full version of the Platform Builder Toolkit for $995.
This toolkit allows the OEM the ability to develop, test, and debug the image using the hardware emulator that
is included in the toolkit. The toolkit also includes one product identification number (PID) for testing on
hardware, but cannot be commercially shipped. In order to purchase runtime licenses the OEM must sign an
agreement with Microsoft called the Microsoft OEM Customer License Agreement (CLA). Once in production a
runtime license must be purchased for each individual device.
Platform Builder Evaluation is for 180 days. The OEM must purchase full version in order to create commercial
image.
No need to sign customer license agreement or purchase licensing until product is to be shipped.

Appendix: Licensing and Developer Resources 386

The Core license is ideal for low-cost devices, such as gateways, entry-level voice over IP (VoIP) phones,
industrial automation equipment, and consumer electronic devices such as CD players, digital cameras, and
networked DVD players.

The number of licenses purchased, will determine the price.

Appendix: Licensing and Developer Resources 387

Considering the cost variance between Core and Professional many OEMs evaluate carefully the cost of
developing software features versus licensing additional features from Microsoft.

Appendix: Licensing and Developer Resources 388

The licensing process begins with getting a free Platform Builder Toolkit Evaluation from an Embedded
Authorized Distributor, this is followed by a purchase of he full version of the Platform Builder Toolkit for $995.
This toolkit allows the OEM the ability to develop, test, and debug the image using the hardware emulator that
is included in the toolkit. The toolkit also includes one product identification number (PID) for testing on
hardware, but cannot be commercially shipped. In order to purchase runtime licenses the OEM must sign an
agreement with Microsoft called the Microsoft OEM Customer License Agreement (CLA). Once in production a
runtime license must be purchased for each individual device.
Platform Builder Evaluation is for 180 days. The OEM must purchase full version in order to create commercial
image.
No need to sign customer license agreement or purchase licensing until product is to be shipped.

Appendix: Licensing and Developer Resources 389

When the OEM is ready to purchase runtime licenses, the OEM should contact a Microsoft Embedded
Authorized Distributor in their area and request the Microsoft OEM Customer License Agreement (CLA) and
Additional Licensing Provisions (ALP). The OEM needs to sign and return the CLA to the Authorized Distributor
as well as reviewing and complying with the ALP.

Appendix: Licensing and Developer Resources 390

Local Help is a great starting point when the troubled waters are encountered. Some users have found that
targeted use of the search engine can decrease their time to problem resolution. As is normally the case with
Visual Studio you can set where you search and can include online resources such as MSDN in your searches.

Platform Builder includes source code samples in the OS Design and OS directories that you can use for a
variety of purposes. Sample code is provided for several types of applications as listed on the slide.

Note: In many cases, sample code is only a starting point for development. That is, some sample code is
complete and ready to build, debug, and test in your OS Design; however, some samples are supplied as
reference only and are incomplete. Sample code has not been tested and is not intended for production use.

A sample design template for network devices that connect to the Internet with a dial-up or broadband
connection, called Gateway. Sample source code, including HTML files, for the gateway design is in the
%_WINCEROOT%\Public\Servers\Oak\Gateway directory. For more information, see Developing a Gateway.

A sample Internet telephony design, called voice over IP (VoIP). Sample source code for the VoIP design is in the
%_WINCEROOT%\Public\DirectX\Oak\VOIP directory. For more information, see Developing an IP Phone.

Sample code files for several drivers are in %_WINCEROOT%\Public\Common\Oak\Drivers\. The sample code in
this directory is intended to be copied to your target configuration for further development.

Sample code for a variety of SOC (system-on-chip) drivers is in %_WINCEROOT%\Platform\Common\Src\SOC.
Additional driver samples can be found in the %_WINCEROOT%\Platform directory.

Sample code for a variety of applications is also available. For example, sample source for Bluetooth is available
in the %_WINCEROOT%\Public\Common\Oak\Drivers\Bluetooth\Sample directory.

Here is the link to search for previous CE webcasts: http://www.microsoft.com/events/AdvSearch.mspx
For some topics you might consider looking at V5 webcasts, the content for some topics, such as test can be
fairly useful. Depending on the topic, some Windows Mobile content can be worth looking at as well.

Chats can be a place to toss a question out:
http://www.microsoft.com/communities/chats/default.mspx

Appendix: Licensing and Developer Resources 391

Local Help is a great starting point when the troubled waters are encountered. Some users have found that
targeted use of the search engine can decrease their time to problem resolution. As is normally the case with
Visual Studio you can set where you search and can include online resources such as MSDN in your searches.

Appendix: Licensing and Developer Resources 392

Another place to start in help is the Windows Embedded CE OS architecture diagram.

Appendix: Licensing and Developer Resources 393

For those topics not covered in this course, the help systems is a great place to start. For example, there are
additional useful utilities for such things as creating installation CAB files that are covered in the Utilities section
of the help.

Appendix: Licensing and Developer Resources 394

Platform Builder includes source code samples in the OS design and OS directories that you can use for a
variety of purposes. Sample code is provided for several types of applications as listed on the slide.

Note: In many cases, sample code is only a starting point for development. That is, some sample code is
complete and ready to build, debug, and test in your OS design; however, some samples are supplied as
reference only and are incomplete. Sample code has not been tested and is not intended for production use.

A sample design template for network devices that connect to the Internet with a dial-up or broadband
connection, called Gateway. Sample source code, including HTML files, for the gateway design is in the
%_WINCEROOT%\Public\Servers\Oak\Gateway directory. For more information, see Developing a Gateway.

A sample Internet telephony design, called voice over IP (VoIP). Sample source code for the VoIP design is in the
%_WINCEROOT%\Public\DirectX\Oak\VOIP directory. For more information, see Developing an IP Phone.

Sample code files for several drivers are in %_WINCEROOT%\Public\Common\Oak\Drivers\. The sample code in
this directory is intended to be copied to your target configuration for further development.

Sample code for a variety of SOC (system-on-chip) drivers is in %_WINCEROOT%\Platform\Common\Src\SOC.
Additional driver samples can be found in the %_WINCEROOT%\Platform directory.

Sample code for a variety of applications is also available. For example, sample source for Bluetooth is available
in the %_WINCEROOT%\Public\Common\Oak\Drivers\Bluetooth\Sample directory.

Appendix: Licensing and Developer Resources 395

You can integrate MSDN into your help system or access it through an internet browser.

Using the advanced search options can be one way to locate information on MSDN.

Appendix: Licensing and Developer Resources 396

http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.windowsce.embedded

Appendix: Licensing and Developer Resources 397

Appendix: Licensing and Developer Resources 398

Here is the link to search for previous CE webcasts: http://www.microsoft.com/events/AdvSearch.mspx
For some topics you might consider looking at V5 webcasts, the content for some topics, such as test can be
fairly useful. Depending on the topic, some Windows Mobile content can be worth looking at as well.

Chats can be a place to toss a question out:
http://www.microsoft.com/communities/chats/default.mspx

Appendix: Licensing and Developer Resources 399

Appendix: Licensing and Developer Resources 400

Appendix: Licensing and Developer Resources 401

Appendix: Licensing and Developer Resources 402

Appendix: Licensing and Developer Resources 403

Appendix: Licensing and Developer Resources 404

Appendix: Licensing and Developer Resources 405

Please take time to complete your evaluation and receive your class certificate.

