

Lab 2-1: Clone a BSP
Create, Build, and Run a New OS Design

Learning Objectives

• Create an OS Design using Visual Studio

• Identify the catalog features included in the design

• Extend the standard design by adding catalog items

• Build configuration for the run-time image and build a run-time image

• Run the OS image on the target device

Prerequisites

• Knowledge of the vocabulary used in OS design, Visual Studio, and the Platform
Builder Plug-in for Visual Studio

Estimated time to complete this lab: 45 minutes

Lab Setup

To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0 with 2006 Roll up and Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• EVM Reference platform

• TI_EVM_3530-Training BSP

2 Lab 2-1 Clone a BSP – TI_EVM

Exercise 1 Clone BSP

In this exercise, you will use the Clone BSP tool in Visual Studio 2005 to create a copy
of the existing EVM Board Support Package (BSP). We can modify this copy instead of
modifying the original that was delivered as a part of the Windows Embedded CE 6.0
tools.

 Clone the EVM BSP

1. Launch Microsoft Visual Studio 2005.

Note If this is the first time Visual Studio is launched after installation the Choose
Default Environment Setting dialog will be displayed. For the purposed of this
course select Platform Builder Development Settings and select Start Visual
Studio.

2. Select the Tools | Platform Builder for CE6.0 | Clone BSP from the menu in
Visual Studio to bring up the Clone BSP dialog box.

3. In the Clone BSP dialog select TI_EVM_3530-Training: ARMV4I from the
Source Board Support Package: drop down box.

4. Type EVMBSP in the Name field in the New Board Support Package Info
area.

Lab 2-1 Clone a BSP 3

5. Type a description [BSP Clone for EVM] for your new BSP in the
Description field.

6. Type EVMBSP in the Platform Directory field.

7. Type GeneriCo in the Vendor field.

8. Type 1.0 in the Version field.
9. Click the Clone Button. The Clone BSP tool will create a new Board Support

Package based on the EVM Board Support Package.
10. Acknowledge the Clone BSP success message by selecting OK.

The EVM Board Support Package has now been cloned into a new Board Support
Package called EVMBSP. This EVMBSP Board Support Package will be used in the
remaining labs.

Exercise 2 Create, build and run the OS design

In this exercise you will create an OS design, and then customize that design by adding
components from the catalog and build the result. You will run the OS Design on the
EVM reference platform.

This OS Design will be used in other labs and will be a suitable platform for running a
variety of Windows CE applications.

You will learn how to:

• Create an OS Design

• Set up the build configuration for your OS run-time image

• Build an OS run-time image

• Run the OS Design on the EVM reference platform.

 Create an OS design

1. Select File | New | Project… from the Visual Studio menu.

2. Select the Platform Builder for CE 6.0 project type in the New Project
dialog.

Lab 2-1 Clone a BSP 5

3. Select OS Design under Visual Studio installed templates.

4. Type EVMOSDesign in the Name field. The solution name will default to
EVMOSDesign as well.

5. Click OK. Visual Studio will launch the Windows Embedded CE 6.0 OS
Design Wizard.

6. Click Next.

7. In the list of available BSPs, select EVMBSP: ARMV4I and click Next.

6 Lab 2-1 Clone a BSP – TI_EVM

8. From the list of available design templates, select PDA Device and click
Next.

Lab 2-1 Clone a BSP 7

9. From the list of available design variants, select Mobile Handheld and click
Next. The Applications & Media configuration window will appear.

8 Lab 2-1 Clone a BSP – TI_EVM

10. Deselect .NET Compact Framework 2.0 and Quarter VGA Resources –
Portrait Mode and click Next. The Networking & Communications
configuration window will appear.

Lab 2-1 Clone a BSP 9

11. Deselect TCP/IPv6 Support.

12. Deselect Personal Area Network (PAN). This will deselect Bluetooth and
IrDA.

13. Click Next, and then Finish to complete the Windows Embedded CE 6.0
Design Wizard.

10 Lab 2-1 Clone a BSP – TI_EVM

Note The wizard creates the initial configuration for your OS Design. We will have the
opportunity to make further changes to the OS Design after completing the
wizard.

Lab 2-1 Clone a BSP 11

14. Click Acknowledge on the Catalog Item Notification dialog.

On completion, Visual Studio will display your OS design project. The Solution
Explorer tab should be active and show your new EVMOSDesign project in your
EVMOSDesign Solution.

12 Lab 2-1 Clone a BSP – TI_EVM

 Inspect the OS Catalog

1. Click on the Catalog Items View tab to display the Catalog.

2. Click on the Filter drop down box in the upper left hand corner of the Catalog
Items View. Observe the different filtering options. The filter controls the
items that are displayed in the catalog. Ensure that All Catalog Items in
Catalog is selected.

3. Observe the selection boxes and icons in the catalog by expanding the nodes.
Selection boxes with a green check mark indicate an item that was specifically
selected as a part of the OS design. Selection boxes with a green square
indicate an item that was brought in to the OS design as a dependency.
Selection boxes that are not marked indicate items that are not included in the
OS design but are available to be added.

4. Locate a catalog item with a green square in its checkbox.

5. Right click on the catalog item and choose Reasons for Inclusion of Item.
The Remove Dependent Catalog Item dialog box displays the catalog items
you selected that caused this catalog item to automatically be included in the
OS design.

6. Close the Remove Dependent Catalog Item dialog box.

Lab 2-1 Clone a BSP 13

7. Expand the Core OS | CEBASE | Applications – End User | Active Sync node in
the catalog.

8. Right click on either of the ActiveSync system cpl items and select Display in
Solution View. The view will change to the Solution Explorer tab. The subproject
containing the ActiveSync component is displayed. This is a great way to navigate
the source code that is available as part of Windows Embedded CE 6.0.

 Add Additional Catalog Items to the OS Design

 Add support for Internet Explorer 6.0

1. Select the Catalog Items View tab to display the OS Design catalog.

Note If the filtering option was not set to All Catalog Items in Catalog, you would not
see catalog items that were not already included in the OS Design.

2. Enter the text Internet Explorer 6.0 Sample into the search text box to the
right of the filter button. Press Enter or click the green arrow. The path
Core OS | CEBASE | Internet Client Services | Browser Application |
Internet Explorer 6.0 for Windows Embedded CE – Standard
Components should be expanded.

Note Depending on where you are currently located in the catalog, you may have to
restart the search from the top.

3. Select the Internet Explorer 6.0 Sample Browser catalog item.

14 Lab 2-1 Clone a BSP – TI_EVM

 Add support for managed code development to your OS design

4. Enter the text ipconfig into the Search box and press Enter. The Network
Utilities (IpConfig, Ping, Route) will be highlighted.

Note Again, depending on node selected when starting a search in the catalog, you may
have to restart the search from the top.

5. Add the Network Utilities to your design by selecting the component.

6. Enter the text wceload into the Search box and press Enter. The CAB File
Installer/Uninstaller component will be highlighted. This is due to the fact
that the SYSGEN name for the component is “wceload”.

7. Add the Cab File Installer/Uninstaller utility to your OS design.

8. Enter the text sysgen_dotnetv2_support into the Search box and press Enter.
The OS Dependencies for.NET Compact Framework 2.0 component will
be highlighted.

9. Add the OS Dependencies for .NET Compact Framework 2.0 to your OS
design.

Note There are two separate components in this category. Be sure you select the one
that does NOT have the – Headless modifier in its description.

Lab 2-1 Clone a BSP 15

 Build the OS run-time image

1. Select Build | Configuration Manager… from the Visual Studio menu to
bring up the Configuration Manager dialog box.

2. Select EVMBSP ARMV4I Release from the Active solution configuration
drop down box and then close the dialog box.

3. Select the Solution Explorer view by selecting the Solution Explorer tab.

4. In the Solution Explorer window, right click on the EVMOSDesign project
(not the Solution node) and choose Properties. This will launch the Property
Pages dialog for your OS design.

5. Expand the Configuration Properties tree and click on the Build Options
node.

6. Ensure the following build options are set:

• Enable eboot space in memory
• Enable kernel debugger
• Enable KITL
• Enable profiling

7. Select OK

16 Lab 2-1 Clone a BSP – TI_EVM

8. Select Build | Build EVMOSDesign from the Visual Studio menu.

Note This will take several minutes to complete depending on the capabilities of your
development system. The following steps for configuring connectivity may be
accomplished while building.

 Configure connectivity options

1. Select Target | Connectivity Options… from the Visual Studio menu. The
Target Device Connectivity Options dialog will appear showing the Kernel
Service Map configuration for the CE Device named connection.

2. Select Ethernet from the Download drop down box.

3. Select Ethernet from the Transport drop down box.

4. Select KdStub from the Debugger drop down box.

Lab 2-1 Clone a BSP 17

 Change the device configuration

The device has a number of configurable options.

5. Connect serial cable to UART3. Connect Ethernet cable to Ethernet jack

Note The device must be on the same subnet as host PC running PlatformBuilder

6. Open Terminal program on host PC (115200, N, 8, 1)

18 Lab 2-1 Clone a BSP – TI_EVM

7. In the Target Device Connectivity Options dialog box in Visual Studio,
Click the Settings button next to the Download drop down menu.

Note Steps 8 through 13 must immediately follow step 7. Read all of these steps and be
prepared for the complete set of steps before performing step 7.

8. Power on the EVM Board. The power switch is located on the right side of the
board by the power cord.

9. Status messages will be displayed on serial port and a 4 color boot screen will
appear on the EVM Board. On first boot only the flash will be reformatted.
This can be a lengthy operation, be patient.

10. Monitor the boot loader progress using the serial terminal program.

11. Boot Menu appears on the EVM.

12. Wait for the EVM Board to get a DHCP address and broadcast BOOTME
packets. . This will allow the Platform Builder to see your EVM on the
network.

13. When the appropriate device name shows up in the Active Target Devices list
in the Ethernet Download Settings dialog box, select it and click OK.

Lab 2-1 Clone a BSP 19

Note In the case of your EVM board, the device name is based on the MAC address.
Each platform actually has its own method of determining a device name, which it
includes in its BOOTME packet.

 Test your OS run time image on the Device

1. Select Target | Attach Device from the Visual Studio menu.

Once the download has begun, wait for the transfer. It can take up to two minutes,
during which the Platform Builder dialog will include a transfer rate and an estimated
time to completion.

20 Lab 2-1 Clone a BSP – TI_EVM

2. If the Download Runtime Image dialog remains open after the download
completes, click Close this dialog box when download completes and then click
Close.

3. After the device boots to the touch calibration screen, follow the instructions to
calibrate the touch screen and continue.

Note During target device initialization and operation, diagnostic messages are
displayed on the Debug tab of the Visual Studio output window. Some of these
messages may sound serious, for example “OEMIoControl: Unsupported Code
…” but do not indicate an error condition. Usually a serious error will be followed
by additional failures or exceptions.

You will now be able to interact with the device and test the features of your new OS
Design. Congratulations, you have successfully built and run your first Windows
Embedded CE 6.0 OS Design!

If you are continuing with the next Hands-On Lab, keep your image running.

Lab 2-2: Develop and Test an
Application Subproject

Objectives

• Create a simple Hello World application subproject

• Deploy the application to the device

• Debug the application running on the device

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 20 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 2-2 Develop and Test an Application Subproject

Exercise 1 Create and configure an application subproject
In this exercise you will create and configure an application subproject.

¾ Create the subproject

1. Click on the Solution Explorer tab to display the Solution Explorer.

2. Locate the Subprojects node below the EVM_3530 project in the Solution
Explorer window.

3. Right click on the Subprojects node and select Add New Subproject... The
Windows Embedded CE Subproject Wizard will appear.

4. Select the WCE Application template.

5. Type MyHelloWorldApp in the Subproject name text box.

Lab 2-2 Develop and Test an Application Subproject 3

6. Click Next.

7. Select A typical “Hello World” application and click Finish. The wizard will
create the files necessary for the typical Hello World application subproject.

¾ Configure the subproject image settings

We will configure the subproject settings so that we can easily debug it without needing
to rebuild our OS Design. This is a good debugging technique that can save development
time. We will use this same technique in most future labs.

1. Right click on the EVM_3530 OSDesign project in the Solution Explorer and
select Properties.

2. From the Configuration drop down select All Configurations.

Note Remembering to select All Configurations can save a lot of time when switching
between configurations. The following labs will reference this procedure and each
time you should make sure to select All Configurations from the Configuration
drop down.

3. Expand the Configuration Properties node and select Subproject Image
Settings.

4. Double click the MyHelloWorldApp entry in the Project settings in run-time
image box. The Edit Run-Time Image Settings dialog box will appear.

5. Select the Exclude from image and Always build and link as debug check
boxes, and click OK.

6. Click OK on the EVM_3530 OSDesign Property Pages dialog.

4 Lab 2-2 Develop and Test an Application Subproject

7. Select Build | Targeted Build Settings from the Visual Studio menu.

8. Ensure that Make Run-Time Image After Building does NOT have a check
mark beside it. If it does, deselect it clicking on the menu item.

Note This step will prevent the OS run-time image from being rebuilt after we build
individual subprojects. This setting will persist for all targeted builds through out
the life of this OS Design.

¾ Set a breakpoint in the application

1. Locate and expand the MyHelloWorldApp subproject in the Subprojects node
of the Solution Explorer.

2. Expand the Source files node of the MyHelloWorldApp subproject.

3. Double click the MyHelloWorldApp.cpp file. The file will load in the Visual
Studio editor.

4. Locate the WndProc() function near the bottom of the file.

5. Click on the DrawText(…) function call and press F9 to set a breakpoint there.

Lab 2-2 Develop and Test an Application Subproject 5

¾ Build and run your subproject

1. Right click the MyHelloWorldApp subproject in the Solution Explorer and select
Build. The application will build and should complete with 0 errors and 0
warnings in the build output window.

Note Your Device instance should still be running from the previous lab. If it is not,
you can restart it now by choosing Target | Attach Device from the Visual Studio
menu.

2. Select Target | Run Programs… from the Visual Studio menu.

3. Select MyHelloWorldApp.exe from the Available Programs box, and click on
Run.

6 Lab 2-2 Develop and Test an Application Subproject

The kernel debugger will halt execution at the breakpoint we just set. Notice the
yellow arrow inside the red circle at the line where we set our breakpoint in the
source code file. This indicates the next statement to be executed.

4. Look at the EVM Board. Notice that the MyHelloWorldApp application is
running, but the Hello World! string has not yet been drawn on the display.

5. Press F10 or select Debug | Step Over from the Visual Studio menu.

6. Look at the EVM Board again. Notice that the Hello World! string has now been
printed on the display.

7. Press F5 or select Debug | Start to allow the EVM to continue running.

Note The sample application does not include a mechanism to allow it exit. We must
close the application using the capabilities of the development environment.

8. Select Debug | Windows | Processes to bring up the Process window. This
window shows all processes running on the Device.

Lab 2-2 Develop and Test an Application Subproject 7

9. Right click on the myhelloworldapp.exe process and select Terminate to kill the
process.

10. Select Yes to verify. The Process window will refresh after a short delay and the
application will be gone.

11. Close the Process window by clicking on the X in the upper right hand corner.

Congratulations! You have successfully created, built and tested a simple Windows
Embedded CE 6.0 application on your OS Design. We will follow a similar
methodology in future labs.

If you are continuing with the next Hands-On Lab, keep your image running.

Lab 2-3: Using the Remote Tools

Objectives:

• Use the Remote System Information tool to see information about your device

• Use the Remote File Viewer to explore and change files on your device

• Use the Remote Performance Monitor to examine system resource loading

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 2-3 Using the Remote Tools

Exercise 1 Using the Remote File Viewer
In this exercise you will use the Remote File Viewer to transfer files between your
development workstation and EVM CE 6.0 target device.

Note Your Device should still be running from the previous lab. If not, restart it by
selecting Target | Attach Device from the Visual Studio menu.

 Starting the Remote File Viewer

1. Select Target | Remote Tools | File Viewer from the Visual Studio menu. The
Select a Windows CE Device dialog will appear.

2. Expand the Windows CE Default Platform node and select Default Device.
Click OK. Visual Studio will begin transferring the required files for the Remote
File Viewer to the EVM.

Note You will get a dialog box asking for the location of an executable. This is
because the kernel debugger running on the device is attempting to monitor all
processes that run on the device, including the remote tools. This can not be done
because the debugging information is not available for these tools, and we can
safely ignore the request. We will configure Visual Studio to suppress these
dialogs in the future. Note that this issue only occurs because we have left the
kernel debugger running inside our OS run-time.

 Lab 2-3 Using the Remote Tools 3

3. Select Don’t display this dialog again in the Find Executable dialog box, and
select Cancel. The Remote File Viewer tool should connect.

Note The Remote File Viewer may not connect if there has been too long of a delay
while you were canceling the Find Executable dialog. If this occurs, you will
need to restart the EVM by selecting Target | Detach Device followed by Target
| Attach Device.

 Explore the device file system

4. Expand the Default Device node in the left hand pane and select the Windows
directory. The right hand pane shows a list of the files in the Windows directory
on the target device.

5. Select View | Details from the Remote File Viewer menu to see the details of
each file in the folder.

 Copy a file from the target device to the development workstation

6. Select WindowsCE.jpg in the right hand pane. We will copy this file from the
device to the PC.

7. Select File | Import File from the Remote File Viewer menu.

8. Save the file to a convenient folder on your development workstation desktop.

4 Lab 2-3 Using the Remote Tools

 Copy a file to the target device

9. Select the Desktop folder in the right hand pane of the Remote File Viewer.
Expand the Windows folder, if necessary, to find the Desktop folder. Select File |
Export File from the Remote File Viewer menu.

10. In the Export File dialog select the WindowsCE.jpg file from the development
workstation and click Open. The file will be transferred from the development
workstation to the device.

11. Close the Remote File Viewer application.

 Lab 2-3 Using the Remote Tools 5

Exercise 2 Remote System Information
In this exercise you will use the Windows CE Remote System Information tool to
examine system settings and properties of the EVM running your OS Design.

 Launch the Remote System Information tool

1. Select Target | Remote Tools | System Information from the Visual Studio
menu.

2. Select OK to accept the Default Device configuration. There will be a delay
while the System Information tool is transferred to the device and gathers
information.

 Explore System Information data

3. Expand the System Information node and select System Summary. Details of
the OS version, current time and time zone settings, and locale are presented on
the right-hand pane.

4. Select Components | Memory in the left hand pane. The total and available
memory, the fraction of program memory in use (Memory load), the amount of
memory allocated to the object store, and other system memory statistics are
reported.

5. Expand Components | Devices in the left hand pane. Observe the list of devices
detected. You can click on individual devices to see information available about
each device.

6 Lab 2-3 Using the Remote Tools

6. Browse the other information available from the tool.

7. Close the Windows CE Remote System Information tool.

 Lab 2-3 Using the Remote Tools 7

Exercise 3 Remote Performance Monitor
In this exercise, you will use the Windows CE Remote Performance Monitor to log
consumption of system resources and other performance related metrics on a EVM CE
6.0 target device.

 Launch the Remote Performance Monitor

1. Select Target | Remote Tools | Performance Monitor from the Visual Studio
menu.

2. Click OK to use the Default Device connection. The Windows CE Remote
Performance Monitor tool will load and show the Chart view.

 Add Performance counters to the Chart view

3. Select Edit | Add to chart from the Remote Performance Monitor tool to bring
up the Add to Chart dialog.

4. Select CE Process Statistics from the Object drop down box.

5. Select % Processor Time from the Counter drop down box.

6. Select _Total from the Instance drop down box.

7. Click on Add.

8 Lab 2-3 Using the Remote Tools

8. Select CE Memory Statistics from the Object drop down box.

9. Select Memory Load from the Counter drop down box.

10. Click Add and then click Done.

11. On the Windows CE desktop, drag an icon rapidly and note the increase in %
Processor Time.

 Create an Alert view and add performance counters

12. Select View | Alert from the Remote Performance Monitor menu.

13. Select Edit | Add to Alert….

14. Select CE Process Statistics from the Object drop down box.

15. Select % Processor Time from the Counter list.

16. Select _Total from the Instance list.

17. Select the Over radio button in the Alert if group and enter the number 10.

18. Click on Add and then Done.

 Lab 2-3 Using the Remote Tools 9

19. Open My Device on the device desktop to generate processor activity. The
configured alert should fire.

20. Close the Remote Performance Monitor tool.

If you are continuing with the next Hands-On Lab, keep your image running.

Lab 3-1: Using the Remote Process
Viewer

Objectives

• Use the Remote Process Viewer to explore the processes and threads running on a
Windows Embedded CE 6.0 device

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 15 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 3-1 Using the Remote Process Viewer

Exercise 1
In this exercise, you will use the Windows CE Remote Process Viewer to examine the
processes and threads running on a Windows CE target device.

Note Your Device should still be running from the previous lab. If not, restart it by
selecting Target | Attach Device from the Visual Studio menu.

 Launch the Remote Process Viewer

1. Select Target | Remote Tools | Process Viewer from the Visual Studio menu.

2. Click OK to use the Default Device connection. The Windows CE Remote
Process Viewer tool will load.

 Explore running processes and threads

3. Examine the list of active processes in the upper pane.

Lab 3-1 Using the Remote Process Viewer 3

4. Click on NK.EXE in the Process pane. Thread details are presented in the center
pane.

5. The DLLs loaded by a process are listed in the lower ‘Module’ pane. Note the
base address of coredll.dll.

4 Lab 3-1 Using the Remote Process Viewer

6. Click on shell.exe in the Process pane. This process has one thread and loads two
modules. Note that coredll.dll is loaded at the same base address in shell.exe as it
was in NK.EXE.

7. Click on explorer.exe in the Process pane. This process has many threads and
many loaded modules. Scroll to the bottom of the module list. Note that
coredll.dll is loaded at the same base address as in the other processes.

8. Close the Remote Process Viewer.

If you are continuing with the next Hands-On Lab, keep your image running.

Lab 3-2: Exploring the Heap

Objectives

• Become familiar with the Windows Embedded CE 6.0 heap

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 3-2 Exploring the Heap

Exercise 1 Create and build the HeapTest1 subproject
The purpose of this exercise is to create, configure and build the subproject that we will
use to examine the Windows Embedded CE 6.0 heap.

 Create HeapTest1 Subproject

1. Select Project | Add New Subproject… from the Visual Studio menu.

2. Enter the WCE Application subproject name: HeapTest1 as shown below.

Note By default, new subprojects are located in the current OS Design folder.

3. Click Next to continue the New Subproject Wizard.

4. Select A simple Windows Embedded CE application.

Lab 3-2 Exploring the Heap 3

5. Click Finish to finish the wizard. The HeapTest1 subproject can be accessed in
the Subprojects folder in Solution Explorer.

 Configure Subproject For Debug

6. From the Solution Explorer, right-click on the EVMOSDesign project and select
Properties.

7. Expand the Configuration Properties tree select Subproject Image Settings.

8. Select All Configurations from the Configuration drop down.

9. Double click the HeapTest1 subproject to bring up the Edit Run–Time Image
Settings dialog.

10. Check the boxes Exclude from image and Always build and link as debug and
click OK.

Note Exclude from image will prevent the subproject from being included in the OS
run-time image if it is built in the future. This is one way to allow the application
to be run directly from the operating system build output folder (typically referred
to as the flat release directory.)

 Always build and link as debug will make the kernel debugger experience better
by disabling compiler optimizations in a release build for this application.

11. Click OK to close the EVMOSDesign Property Pages dialog.

 Build the application subproject

12. Right click on the HeapTest1 subproject in the Solution Explorer and select
Build. The application should build with zero errors and warnings.

Note This is referred to as a Targeted build. We built a specific subproject in the
Solution Explorer. Builds that are initiated from the Visual Studio Build menu
will cause the entire solution or project to be built (sometimes referred to as a
Global build).

 Global builds and Targeted builds can be separately configured with regard to
whether they also cause the OS run-time image to be rebuilt. These settings are
located in Build | Global Build Settings and Build | Targeted Build Settings
from the Visual Studio menu. We previously configured the Targeted Build
Settings not to rebuild the OS run-time image.

4 Lab 3-2 Exploring the Heap

 Set a breakpoint in the application

13. Expand the HeapTest1 subproject in the Solution Explorer.

14. Open the Source files branch and double-click on the HeapTest1.cpp file to open
it in the Visual Studio editor.

15. Set a breakpoint in this source file by clicking on the return statement and
pressing F9. We will know that we have built and run the application
successfully when we hit this breakpoint.

 Run the application on the target device

16. Select Target | Run Programs from the Visual Studio menu to bring up Run
Program dialog.

17. Select HeapTest1.exe, and click Run.

Lab 3-2 Exploring the Heap 5

18. Observe that the kernel debugger halts execution at the previously set breakpoint.
We have successfully created, built and run our application.

19. Leave the application at the breakpoint.

6 Lab 3-2 Exploring the Heap

Exercise 2 Explore Process Model of Simple Application
This exercise will use some of the debug capabilities of Platform Builder to explore some
features of the HeapTest1 application.

 Examine HeapTest1 process details

1. Select Debug | Windows | Threads from the Visual Studio menu to bring up the
Threads window. This window will allow you to see information for all the
threads in a particular process,

2. Select heaptest1.exe from the Process drop down box. Note that heaptest1.exe
has a single thread running at the default thread priority.

3. Expand the thread node to show the call stack.

Note You can double click on any of the entries in the call stack to attempt to see the
source code at that point. If you have installed the Shared Source you would be
able to view the source code for these functions. Otherwise you will see the
disassembly view.

4. Close the Threads and Call Stack windows.

5. Select Debug | Windows | Modules from the Visual Studio menu. The Modules
window will appear. This view shows all modules running on the target device.

Lab 3-2 Exploring the Heap 7

6. Observe that the heaptest1.exe module has an Image Address starting at
0x00010000. This same starting address is used by all processes on the device
with the exception of nk.exe.

7. Select heaptest1.exe from the Process drop down box. This shows just the
module information related to the heaptest1.exe process.

8. Observe that the only module listed other than heaptest1.exe is coredll.dll.
Coredll.dll is generally loaded by every process as it provides access to most
system APIs.

9. Close the Modules window.

10. Press F5 to allow this application to continue running, and it will exit.

 Remove breakpoint

11. Click on the line containing the breakpoint in heaptest1.cpp

12. Press F9 to remove the breakpoint.

8 Lab 3-2 Exploring the Heap

Exercise 3 Local Heap
The purpose of this exercise is to explore the implementation of Local Heap memory in a
simple Windows CE application. This application will allocate a number of blocks, free
the blocks and allocate the blocks again. You will use Platform Builder tools to view the
heap structures and to demonstrate the behavior of the heap management algorithm.

 Copy HeapTest1 code to HeapTest1.cpp

1. Open HeapTest1.cpp file from HeapTest1 subproject if not already open.

2. Open Lab 3-2 HeapTest code.txt file from the Student files, and then copy the
code snippet to HeapTest1.cpp as below.

3. Save HeapTest1.cpp.

 Build and run HeapTest1.exe

4. Right click on the HeapTest1 subproject in the Solution Explorer and select
Build.

5. Run HeapTest1.exe using the Target | Run Programs menu in Visual Studio.

6. Examine the debug output window in Visual Studio, which should be similar to
the following:

Lab 3-2 Exploring the Heap 9

Three identically sized blocks were allocated from the local heap and then freed in the
same sequence they were allocated. Three more identically sized blocks were then
allocated again.

Observe the addresses of each heap allocation in the debug output. Notice that the
second group of allocations did not start at the same point as the first group even though
those blocks had been freed and were available for use. Instead, the second set of
allocations was given addresses starting with the address of the last item in the original
group. The virtual address range that originally backed the first two memory allocations
is now unused.

This demonstrates one of the characteristics of Windows Embedded CE 6.0 heaps. New
heap allocations are taken from the last allocated or freed item first; the heap manager
does not start allocation attempts at the beginning of the heap. In this case, only block 3
was reused because it was the last one previously freed. The virtual memory would have
been used more efficiently if the application had freed the memory in the reverse order
that it had been allocated.

10 Lab 3-2 Exploring the Heap

 Run Remote Heap Walker Viewer

7. From the Visual Studio Platform Builder menu, select Target | Remote Tools |
Heap Walker.

8. Click OK to select the Default Device configuration. The Remote Heap Walker
window will appear.

9. Double click on the line containing HeapTest1.exe in the process list. A second
window containing the process heap information will appear.

Lab 3-2 Exploring the Heap 11

10. Double click on the heap entry at the address corresponding to block 4 in the
debug window. This will be the first Fixed block after the first Free block.

11. Observe the first byte is a ‘4’ (0x34). This entry was written by the HeapTest1
application to identify its memory block.

12. Take some time and explore the source code to the application and what the tools
can tell you about it. Step through the code and examine the various Platform
Builder tools as you go through. This code could be used as a starting point to
examine other aspects of heap management.

13. Close the Remote Heap Walker window.

 Terminate the HeapTest1 application

14. Select Debug | Windows | Processes from the Visual Studio menu.

15. Right click on the heaptest1.exe process and select Terminate.

16. Click Yes to confirm.

17. Close the Processes window.

If you are continuing with the next Hands-On Lab, keep your image running.

Lab 3-3: Scenario - Fixing a Memory
Leak

Objectives

• Use the Target Control utility to identify a memory leak

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 3-3 Scenario: Fix a Leaking Application

Exercise 1 Virtual memory leak
QA is testing the functionality of some utilities that were written for your new CE 6.0
device. The utilities initially appeared to work correctly, however during the QA phase
one application continues to lock up the system. A memory leak is suspected. You have
been asked to take a look at the utility to identify the problem and solve it.

 Add the LeakingMemory subproject to your development environment

1. Copy the LeakingMemory folder from the Lab 3-3 Project Files from the
Student files into your OS Design folder at
C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign.

2. In the Solution Explorer window right click on the Subprojects folder and select
Add Existing Subproject…

3. Navigate to the LeakingMemory folder that you just copied.

4. Select LeakingMemory.pbpxml and click Open. Visual Studio will add the
project to your current solution.

Lab 3-3 Scenario: Fix a Leaking Application 3

5. Configure the LeakingMemory subproject to be excluded from the image and
always build and link as debug, just as you did in Lab 2-2 Exercise 1.

6. Right click the LeakingMemory subproject and select Build.

 Investigate the memory leak

7. Run the application by selecting Run Programs… in Target menu.

8. Observe the output on your device. The following message box appears:

 Note This dialog box is used to stop the application from continuing without actually
breaking into the debugger, thereby allowing us to use the memory tools.

 This particular dialog indicates a point in the initialization sequence of the utility
prior to any memory reservations. It allows us to get a picture of the initial
memory usage that we can use as a basis for future comparisons.

9. Select Target | Target Control from the Visual Studio menu. The Windows CE
Command Prompt window will open.

10. At the Windows CE> prompt, type mi full. This will show memory information
for all processes running on the device.

11. Locate the section for the LeakingMemory.exe process.

12. Study the virtual memory contents of the process using the following legend:

Character Definition
<blank> A blank space indicates a virtual page that is not currently allocated. Does not require a

physical page.
- Reserved but not in use. Indicates a virtual page that is currently allocated but not

mapped to any physical memory. Does not require a physical page.
C Code pages in ROM. Does not require a physical page.
c Code pages in RAM. Requires a physical page.
S Indicates a virtual page that holds a stack. Requires a physical page.
P Peripheral memory (pages used to map target device memory by using VirtualAlloc).

Indicates a virtual page that is used to map a range of hardware addresses. Does not
require a physical page. Peripheral memory may include frame buffer memory.

W Indicates a virtual page that holds read-write data. Requires a physical page. Read-write
pages include global variables as well as dynamically allocated memory.

O Indicates a virtual page that is used by the object store. Requires a physical page. Should
only appear in the Filesys process.

? Contents unknown.

4 Lab 3-3 Scenario: Fix a Leaking Application

Character Definition
r Read-only data pages in RAM. Requires a physical page. Read-only data primarily comes

from data items that are declared as a const type in the source code.
R Read-only data pages in ROM. Does not require a physical page. Read-only data primarily

comes from data items that are declared as a const type in the source code.

Note: For CPUs such as ARM and SHx that do not distinguish between read-only and
executable code pages in hardware, use R(r) to represent both data and code.

13. Copy the memory information for the LeakingMemory process to a temporary
text file so that we can easily compare it with another run later.

14. In the device window, click OK in the message box. The utility will run, doing
its useful work.

15. The following message box will display on the device:

Note This dialog box indicates the end of the utility processing. Presumably any
resources that have been allocated have now been freed, and there should be no
memory leaks.

16. At the Windows CE> prompt, type mi full. This will show the current memory
information for all processes running on the device.

17. Compare the memory usage for the LeakingMemory.exe program against the one
that was previously saved.

18. Click OK on the dialog box on the device, allowing it to exit.

 Analysis

The application should have similar memory usage after it has performed its useful work
and cleaned up as it did before it started. The two memory dumps should be the same.

Lab 3-3 Scenario: Fix a Leaking Application 5

Before After

Memory usage for Process
'LeakingMemory.exe' pid 5e0000e
 00000000: -----
 00010000: -cWc
 00020000: ---------------S
 00030000: W--------------
 00040000: RRRRRRRRRRRRRRRR
 00050000: RRRRRRRRRRRRRRRR
 00060000: RRRRRRRRRRRRRRRR
 00070000: RRRR

 40000000: ----------------
 40010000: -CCCCCCCCCCCCCCC
 40020000: CCCCCCCCCCCCCCCC
 40030000: CCCCCCCCCCCCCCCC
 40040000: CCCCCCCCCCCCCCCC
 40050000: CCCCCCCCCCCCCCCC
 40060000: CCCCCCCCCCCCCCCC
 40070000: CCCCCCCCCCCCCCCC
 40080000: CCCCCCCCCCCCCCCC
 40090000: W------CCCCCCC--
 400a0000: ---
Page summary: code=134(2) data r/o=52 r/w=3
stack=1 reserved=63

Memory usage for Process
'LeakingMemory.exe' pid 5e0000e
 00000000: -----
 00010000: -cWc
 00020000: ---------------S
 00030000: W--------------
 00040000: RRRRRRRRRRRRRRRR
 00050000: RRRRRRRRRRRRRRRR
 00060000: RRRRRRRRRRRRRRRR
 00070000: RRRR
 00080000: WWWWWWWWWWWWWWWW
 00090000: WWWWWWWWWWWWWWWW
 40000000: ----------------
 40010000: -CCCCCCCCCCCCCCC
 40020000: CCCCCCCCCCCCCCCC
 40030000: CCCCCCCCCCCCCCCC
 40040000: CCCCCCCCCCCCCCCC
 40050000: CCCCCCCCCCCCCCCC
 40060000: CCCCCCCCCCCCCCCC
 40070000: CCCCCCCCCCCCCCCC
 40080000: CCCCCCCCCCCCCCCC
 40090000: W------CCCCCCC--
 400a0000: ---
Page summary: code=134(2) data r/o=52 r/w=35
stack=1 reserved=63

However, the output of the Target Control utility shows that there is 128KB of read/write
memory committed after the utility has finished that wasn’t there before it started. That
memory was allocated by the utility, but never released. That memory has been leaked.

 Fix the application

19. Uncomment the call to VirtualFree in the file LeakingMemory.cpp. This looks
suspiciously like it might be the cause of the problem.

20. Right click on the LeakingMemory subproject and select Build.

21. Run the program again, and redo the analysis.

22. Observe that the two memory usage maps are now the same; the memory leak is
gone!

6 Lab 3-3 Scenario: Fix a Leaking Application

Note This particular leak was not all that serious and created just to illustrate the point.
The memory would have been reclaimed automatically when the process exited.
However, in other scenarios the leak could have been more serious. For example,
a kernel mode dll could have a leak that would never be recovered since the
kernel process never exits.

If you are continuing with the next Hands-On Lab, keep your image running.

Lab 3-4: Exploring Threads Using
Kernel Tracker

Objectives

• Learn which build options are required to work with the Remote Kernel Tracker

• Be familiar with the Kernel Tracker menu options and what they control, such as
the time scale

• Recognize different execution patterns in Kernel Tracker such as when threads
start and stop running.

Prerequisites

• Completed Lab 2-1

• Completed Lab 3-2

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 3-4 Exploring Threads Using Kernel Tracker

Exercise 1 Using the Remote Kernel Tracker
In this exercise you will become familiar with the Remote Kernel Tracker tool. The
Remote Kernel Tracker allows you to see the kernel events that occur on your Windows
Embedded CE6.0 device.

 Launch the Remote Kernel Tracker

1. Select Target | Remote Tools | Kernel Tracker from the Visual Studio menu.

2. Click OK to accept the Default Device connection.

3. Click to toggle Show/Hide Legend mode as desired.

Lab 3-4 Exploring Threads Using Kernel Tracker 3

Events occurring on the CE Device are continuously being logged. First events are
logged into local memory. CeLogFlush.exe periodically transmits the logged data to the
host via the Platform Manager connection. The Remote Kernel Tracker tool displays the
logged information in graphical form.

4. Click to refresh the logging data being displayed and note the time frame
increasing as new data is being added to the right.

5. Click to search for an event by type or by a particular process or thread,
etc.

6. Expand the Interrupts node.

7. Set the Zoom range to 10ms using the Zoom Range drop down box.

Note We enabled the profiling option back in Lab 2-1. This option is what allows
interrupts to be observable in the Remote Kernel Profiler. The profiler option also
provides support for a Monte Carlo profiler that can be run using the Target
Control utility.

4 Lab 3-4 Exploring Threads Using Kernel Tracker

Exercise 2 Logging a Simple Application
Before looking at the complex relationships between multiple threads, we will look at the
logging data being generated by a simple application. There is a great deal of data for
even a simple application that only has one thread.

 Ensure no breakpoints are set

1. Select Debug | Windows | Breakpoint from the Visual Studio menu. This will
bring up the Breakpoints window.

2. Delete any breakpoints that might have been left in source code files.

 Examine the HeapTest1 application

3. Launch the HeapTest1 application using the Visual Studio Target menu.

Note Moving the cursor over events in the Remote Kernel Tracker displays info tips
showing more detail regarding the event.

4. Position the mouse over an icon, in the HeapTest1.exe process, for a few
seconds to see a pop-up for more details on the Load module event. Use the Find
Event tool if necessary to find a Load Module icon.

5. Position the mouse over a dark green line for a few seconds to see a pop-up for
more details about Process Info.

6. Click on an event to set the cursor to assist in zooming and stepping through
events and threads using menu buttons.

7. Change the Zoom Range to view thread transitions in more detail.

8. Observe the calls to Sleep that occur every 1000 milliseconds in the HeapTest1
application. Note that the application still has a loop at the end that keeps it from
exiting automatically.

Lab 3-4 Exploring Threads Using Kernel Tracker 5

9. Terminate the HeapTest1 application using the Processes window available from
the Visual Studio menu.

10. Observe the Free Module event that occurs on the HeapTest1 application in the
Remote Kernel Tracker.

Take some time to explore the information provided by the kernel tracker to see
how it shows the thread transitions and the reasons for them.

11. Close the Remote Kernel Tracker. Do not save the collected data.

6 Lab 3-4 Exploring Threads Using Kernel Tracker

Lab 3-5: Thread Synchronization

Objectives

• Understand the read / modify / write vulnerability

• Be able to implement an atomic read / modify / write sequence using a critical
section that removes the vulnerability

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 15 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 3-5 Thread Synchronization

Exercise 1 Observe the vulnerability
This sample demonstrates a read / modify / write vulnerability. Multiple threads
increment a shared global variable by

• reading the current global variable value into a temporary variable (READ)

• adding 1 to the value in the temporary variable (MODIFY)

• writing the temporary variable back to the global variable (WRITE)

Each thread iterates over this sequence a set number of times. The final value of the
variable should be the number of threads multiplied by the number of iterations each
thread makes.

 Add the existing ThreadSynchronization subproject to the OS Design

1. Copy the ThreadSynchronization subproject from the Student files to your OS
Design at C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign.

2. Right click on the Subprojects node in the Solution Explorer and select Add
Existing Subproject.

3. Select the ThreadSynchronization.pbpxml file from the
ThreadSynchronization folder.

4. Configure the ThreadSynchronization subproject to be excluded from the
image and always build and link as debug, as documented in Lab 2-2.

 Build and run the application

5. Right click on the ThreadSynchronization subproject in the Solution Explorer
and select Build.

Lab 3-5 Thread Synchronization 3

6. Launch ThreadSynchronization.exe using Target | Run Programs… from the
Visual Studio menu.

4 Lab 3-5 Thread Synchronization

7. Observe output similar to the following:

8. Notice that the final total is less than the expected total.

Analysis

The final value is less than expected because the read / modify / write sequence is not
atomic. The scheduler can interrupt a thread after it has performed the read, and run
another thread that is performing the same algorithm. The second thread continues to
increment the variable from the same value where the original thread stopped. When the
original thread is eventually scheduled again it continues where it left off, and writes the
value stored in the temporary register out to the global variable. In so doing, it destroys
the work that was done on the variable by other threads while it was blocked. Each
thread ran the prescribed number of times, but some of the work was inadvertently reset.

This vulnerability exists any time a variable shared between multiple threads is accessed
with a non-atomic read/modify/write sequence.

Lab 3-5 Thread Synchronization 5

Exercise 2 Fix the vulnerability
The read / modify / write sequence can be made atomic using synchronization objects. In
this exercise we will use a critical section, although mutexes could be used as well. Note
that the best way to protect an increment of a single variable is to use an interlocked
function. However, we have used functions to do our work so the entire sequence must
be protected.

 Instantiate the critical section

9. Open the ThreadSynchronization.cpp file from the Solution Explorer.

10. Uncomment the global variable MyCritSec.

 Initialize the critical section

11. Uncomment the call to InitializeCriticalSection in the function WinMain.

 Protect the vulnerable code sequence

12. Uncomment the call to EnterCriticalSection in the function DoWork.

13. Uncomment the call to LeaveCriticalSection in the function DoWork.

 Clean up resources

14. Uncomment the call to DeleteCriticalSection in the function WinMain.

 Build and run the application

15. Right click on the ThreadSynchronization subproject in the Solution Explorer
and select Build.

16. Launch ThreadSynchronization.exe using Target | Run Programs from the
Visual Studio menu.

6 Lab 3-5 Thread Synchronization

17. Observe correct output similar to the following:

If you are continuing with the next Hands-On Lab, keep your image running.

Lab 3-5 Thread Synchronization 7

Lab 3-6: Exploring Synchronization
Objects

Objectives

• Explain the different types of synchronization available in Windows CE

• Understand differences among synchronization objects.

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 40 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 3-6 Exploring Synchronization Objects

Exercise 1 Mutex synchronization
In this exercise you will see a simple implementation of synchronization using mutexes.

 Add the existing MutexDemo subproject to the OS Design

1. Copy the MutexDemo subproject from the Student files to your OS Design at
C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign.

2. Right click on the Subprojects node in the Solution Explorer and select Add
Existing Subproject.

3. Select the MutexDemo.pbpxml file from the MutexDemo folder.

4. Configure the MutexDemo subproject to be excluded from the image and
always build and link as debug, as documented in Lab 2-2.

 Build MutexDemo subproject

5. Right click the MutexDemo subproject in the Solution Explorer and select Build.

6.

Lab 3-6 Exploring Synchronization Objects 3

 Run application

7. Launch MutexDemo.exe using Target | Run Programs… from the Visual
Studio menu.

8. Select Windows CE Debug from the drop down box in the Output window. This
will allow us to see the debug output from the device when we run our test
application.

4 Lab 3-6 Exploring Synchronization Objects

Note The Output window is currently displaying the build output because we just
performed a build. In many circumstances, Visual Studio anticipates what we
would like to see and switches the Output window appropriately. However, this
does not always work, and the Output window ends up displaying something
other than the operation we are interested in. The following step is one of those
that Visual Studio does not anticipate.

9. Select Target | Target Control from the Visual Studio menu to bring up the
Windows CE Command Prompt window (the Target Control utility). You may
dock this window in a convenient location if you wish.

Note We are running the application using the Target Control utility this time, instead
of using the Target | Run Programs menu in Visual Studio. The Target Control
utility is a lower level interface into the debug shell supported by Windows
Embedded CE 6.0, and exposes a great deal of functionality. The Target | Run
Programs menu item leverages the same debug shell functionality to launch
programs as does the Target Control utility.

10. Type s MutexDemo command into Windows CE Command Prompt window as
follows:

Lab 3-6 Exploring Synchronization Objects 5

Windows CE>s MutexDemo

11. Press <Enter> and verify debug output is similar to the following sequence:

3771174 PID:469001a TID:46e001a Priority = 251
3771174 PID:469001a TID:46e001a -- 0
3773184 PID:469001a TID:4720012 1 1
3773235 PID:469001a TID:473001a 2 2
3773537 PID:469001a TID:473001a 2 3
3773839 PID:469001a TID:473001a 2 4
3774141 PID:469001a TID:473001a 2 5
3776186 PID:469001a TID:4720012 1 6
3776237 PID:469001a TID:473001a 2 7
3776539 PID:469001a TID:473001a 2 8
3776841 PID:469001a TID:473001a 2 9
3777143 PID:469001a TID:473001a 2 A
3779188 PID:469001a TID:4720012 1 B
3779239 PID:469001a TID:473001a 2 C
3779541 PID:469001a TID:473001a 2 D
3779843 PID:469001a TID:473001a 2 E
3780145 PID:469001a TID:473001a 2 F
3781185 PID:469001a TID:46e001a -- F
3782190 PID:469001a TID:4720012 1 10
3782241 PID:469001a TID:473001a 2 11
3782543 PID:469001a TID:473001a 2 12
3782845 PID:469001a TID:473001a 2 13
3783147 PID:469001a TID:473001a 2 14
3785192 PID:469001a TID:4720012 1 15
3785243 PID:469001a TID:473001a 2 16
3785545 PID:469001a TID:473001a 2 17
3785847 PID:469001a TID:473001a 2 18
3786149 PID:469001a TID:473001a 2 19
3788194 PID:469001a TID:4720012 1 1A
3788245 PID:469001a TID:473001a 2 1B
3788547 PID:469001a TID:473001a 2 1C
3788849 PID:469001a TID:473001a 2 1D
3789151 PID:469001a TID:473001a 2 1E
3791186 PID:469001a TID:46e001a -- 1E
3791196 PID:469001a TID:4720012 1 1F
3791247 PID:469001a TID:473001a 2 20
3791549 PID:469001a TID:473001a 2 21
3791851 PID:469001a TID:473001a 2 22
3792153 PID:469001a TID:473001a 2 23

6 Lab 3-6 Exploring Synchronization Objects

12. Launch the Remote Kernel Tracker to observe interaction between threads that
are using the mutex. Try to correlate the events you see with the debug output
and the source code.

Tip Expand the MutexDemo node in the left hand pane to see the activity on the
individual threads running in the process. Set the cursor on a particular area of
thread activity, then change the zoom range to something small (10 milliseconds).
This way, you can see everything that is going on in the thread.

 Terminate the application using the Target Control utility

13. Type gi proc in the Windows CE Command Prompt window. This will display a
list of processes, including the name and an identification number for each one.

14. Determine the process identifier number for the mutexdemo application. The
identifier for the mutexdemo in the dialog shown below is 09, your’s may differ.

15. Terminate the process using the command kp<space><id>, where <id> is the
process identifier returned from the gi proc command.

Lab 3-6 Exploring Synchronization Objects 7

 Measure synchronization performance

16. Type s osbench –t 3 and press <Enter> at the Windows CE Command Prompt.
This will run the OSBench utility that tests the performance of various kernel API
calls. This particular command line will limit the testing to mutexes only.

Note The command line parameters for OSbench can be obtained by using the –h
command line parameter to the OSBench utility.

17. Examine the OSBench output. You may wish to compare the performance of
mutexes to other synchronization methods.

8 Lab 3-6 Exploring Synchronization Objects

Lab 3-6 Exploring Synchronization Objects 9

10 Lab 3-6 Exploring Synchronization Objects

Exercise 2 Event synchronization
In this exercise you will see a simple implementation of synchronization using events.

 Add the existing EventDemo subproject to the OS Design

1. Copy the EventDemo subproject from the Student files to your OS Design at
C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign.

2. Right click on the Subprojects node in the Solution Explorer and select Add
Existing Subproject.

3. Select the EvenDemo.pbpxml file from the EventDemo folder.

4. Configure the EventDemo subproject to be excluded from the image and
always build and link as debug, as documented in Lab 2-2.

 Build EventDemo subproject

5. Right click the EventDemo subproject in the Solution Explorer and select Build.

 Run application

6. Select Windows CE Debug from the drop down box in the output window. This
will allow us to see the debug output from the device when we run our test
application.

7. Type s EventDemo into the Windows CE Command Prompt window as
follows:

Windows CE>s EventDemo

8. Press <Enter> and verify debug output is similar to the following:

s EventDemo 17:14:10 09/22/2008 Pacific Daylight Time
End s EventDemo 17:14:10 09/22/2008 Pacific Daylight Time

6786826 PID:49b002a TID:49d002a Primary = 251
6786826 PID:49b002a TID:49d002a Thread1 = 250
6786826 PID:49b002a TID:49d002a Thread2 = 249
6786826 PID:49b002a TID:49d002a -- 1
6788647 PID:49b002a TID:49d002a -- 2
6791559 PID:49b002a TID:49d002a -- 3
6791559 PID:49b002a TID:49d002a E1 auto
6791559 PID:49b002a TID:4d50022 T2 1
6793236 PID:49b002a TID:49d002a -- 4
6794827 PID:49b002a TID:49d002a -- 5
6794827 PID:49b002a TID:49d002a E2 manual
6794827 PID:49b002a TID:4d50022 T2 2
6796562 PID:49b002a TID:49d002a -- 6
6796562 PID:49b002a TID:49d002a E1 auto
6796562 PID:49b002a TID:49f002a T1 1

Lab 3-6 Exploring Synchronization Objects 11

6798442 PID:49b002a TID:49d002a -- 7
6800180 PID:49b002a TID:49d002a -- 8
6801880 PID:49b002a TID:49d002a -- 9
6801880 PID:49b002a TID:49d002a E1 auto
6801882 PID:49b002a TID:4d50022 T2 3
6803839 PID:49b002a TID:49d002a -- 10
6803839 PID:49b002a TID:49d002a E2 manual
6805639 PID:49b002a TID:49d002a -- 11
6806674 PID:49b002a TID:49d002a -- 12
6806674 PID:49b002a TID:49d002a E1 auto
6806674 PID:49b002a TID:4d50022 T2 4
6808499 PID:49b002a TID:49d002a -- 13
6810354 PID:49b002a TID:49d002a -- 14
6812098 PID:49b002a TID:49d002a -- 15
6812098 PID:49b002a TID:49d002a E1 auto
6812098 PID:49b002a TID:4d50022 T2 5
6812098 PID:49b002a TID:49d002a E2 manual
6813928 PID:49b002a TID:49d002a -- 16
6815698 PID:49b002a TID:49d002a -- 17
6817232 PID:49b002a TID:49d002a -- 18
6817232 PID:49b002a TID:49d002a E1 auto
6817232 PID:49b002a TID:4d50022 T2 6
6818980 PID:49b002a TID:49d002a -- 19
6820885 PID:49b002a TID:49d002a -- 20
6820885 PID:49b002a TID:49d002a E2 manual
6820885 PID:49b002a TID:4d50022 T2 7
6822497 PID:49b002a TID:49d002a -- 21
6822497 PID:49b002a TID:49d002a E1 auto
6822497 PID:49b002a TID:49f002a T1 2
6824389 PID:49b002a TID:49d002a -- 22
6826793 PID:49b002a TID:49d002a -- 23
6828271 PID:49b002a TID:49d002a -- 24
6828271 PID:49b002a TID:49d002a E1 auto
6828271 PID:49b002a TID:4d50022 T2 8
6830076 PID:49b002a TID:49d002a -- 25
6830076 PID:49b002a TID:49d002a E2 manual
6831919 PID:49b002a TID:49d002a -- 26
6833771 PID:49b002a TID:49d002a -- 27
6833771 PID:49b002a TID:49d002a E1 auto
6833771 PID:49b002a TID:4d50022 T2 9
6835713 PID:49b002a TID:49d002a -- 28
6837640 PID:49b002a TID:49d002a -- 29
6839533 PID:49b002a TID:49d002a -- 30
6839533 PID:49b002a TID:49d002a E1 auto
6839533 PID:49b002a TID:4d50022 T2 10
6839533 PID:49b002a TID:49d002a E2 manual
6841163 PID:49b002a TID:49d002a -- 31
6842912 PID:49b002a TID:49d002a -- 32
6844504 PID:49b002a TID:49d002a -- 33
6844504 PID:49b002a TID:49d002a E1 auto
6844505 PID:49b002a TID:4d50022 T2 11
6846250 PID:49b002a TID:49d002a -- 34
6848938 PID:49b002a TID:49d002a -- 35
6848938 PID:49b002a TID:49d002a E2 manual
6848938 PID:49b002a TID:4d50022 T2 12
6851540 PID:49b002a TID:49d002a -- 36
6851540 PID:49b002a TID:49d002a E1 auto
6851540 PID:49b002a TID:4d50022 T2 13
6853337 PID:49b002a TID:49d002a -- 37
6854992 PID:49b002a TID:49d002a -- 38
6856724 PID:49b002a TID:49d002a -- 39
6856724 PID:49b002a TID:49d002a E1 auto
6856724 PID:49b002a TID:4d50022 T2 14
6858369 PID:49b002a TID:49d002a -- 40
6858369 PID:49b002a TID:49d002a E2 manual
6859459 PID:49b002a TID:49d002a -- 41
6862226 PID:49b002a TID:49d002a -- 42
6862226 PID:49b002a TID:49d002a E1 auto
6862226 PID:49b002a TID:4d50022 T2 15
6863947 PID:49b002a TID:49d002a -- 43
6865796 PID:49b002a TID:49d002a -- 44

12 Lab 3-6 Exploring Synchronization Objects

6867423 PID:49b002a TID:49d002a -- 45
6867423 PID:49b002a TID:49d002a E1 auto
6867423 PID:49b002a TID:4d50022 T2 16
6867423 PID:49b002a TID:49d002a E2 manual
6869214 PID:49b002a TID:49d002a -- 46
6870231 PID:49b002a TID:49d002a -- 47
6871994 PID:49b002a TID:49d002a -- 48
6871994 PID:49b002a TID:49d002a E1 auto
6871994 PID:49b002a TID:4d50022 T2 17
6873860 PID:49b002a TID:49d002a -- 49
6875578 PID:49b002a TID:49d002a -- 50
6875578 PID:49b002a TID:49d002a E2 manual
6875578 PID:49b002a TID:4d50022 T2 18
6877474 PID:49b002a TID:49d002a -- 50 shutdown

9. Use the Remote Kernel Tracker to observe interaction between threads that are
using event objects. Try to correlate the events you see with the debug output and
the source code.

Note This application terminates automatically. If you see the shutdown message in
the debug output, the application has already terminated. If Remote Kernel
Tracker was still running from the last Exercise, you should still be able see the
event information.

 Measure synchronization performance

10. Type s osbench –t 1 and press <Enter> at the Windows CE Command Prompt.
This will run the OSBench utility that tests the performance of various kernel API
calls. This particular command line will limit the testing to events only.

11. Examine the OSBench output. You may wish to compare the performance of
events to other synchronization methods.

Lab 3-6 Exploring Synchronization Objects 13

Exercise 3 Semaphore synchronization
In this exercise you will see a simple implementation of synchronization using
semaphores.

 Add the existing SemaphoreDemo subproject to the OS Design

1. Copy the SemaphoreDemo subproject from the Student files to your OS Design
at C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign.

2. Right click on the Subprojects node in the Solution Explorer and select Add
Existing Subproject.

3. Select the SemaphoreDemo.pbpxml file from the SemaphoreDemo folder.

4. Configure the SemaphoreDemo subproject to be excluded from the image and
always build and link as debug, as documented in Lab 2-2.

 Build SemaphoreDemo subproject

5. Right click the SemaphoreDemo subproject in the Solution Explorer and select
Build.

 Run application

6. Select Windows CE Debug from the drop down box in the output window. This
will allow us to see the debug output from the device when we run our test
application.

7. Type s SemaphoreDemo into the Windows CE Command Prompt window as
follows:

Windows CE>s SemaphoreDemo

8. Press <Enter> and verify debug output is similar to the following:

6887811 PID:4f2000a TID:4f9000a 1 \ 1
6887838 PID:4f2000a TID:4fa000a 2 \ 2
6887891 PID:4f2000a TID:4fc000a 3 \ 3
6887943 PID:4f2000a TID:4fa000a 2 \ 4
6887994 PID:4f2000a TID:4fc000a 3 \ 5
6888015 PID:4f2000a TID:4fa000a 2 \ 6
6888045 PID:4f2000a TID:4f9000a 1 \ 7
6888066 PID:4f2000a TID:4fc000a 3 \ 8
6888117 PID:4f2000a TID:4fa000a 2 \ 9
6888168 PID:4f2000a TID:4fc000a 3 \ 10
6888219 PID:4f2000a TID:4fa000a 2 \ 11
6888246 PID:4f2000a TID:4fc000a 3 \ 12
6888270 PID:4f2000a TID:4f9000a 1 \ 13
6888297 PID:4f2000a TID:4fa000a 2 \ 14
6888348 PID:4f2000a TID:4fc000a 3 \ 15

14 Lab 3-6 Exploring Synchronization Objects

6888399 PID:4f2000a TID:4fa000a 2 \ 16
6888451 PID:4f2000a TID:4fc000a 3 \ 17
6888471 PID:4f2000a TID:4fa000a 2 \ 18
6888502 PID:4f2000a TID:4f9000a 1 \ 19
6888522 PID:4f2000a TID:4fc000a 3 \ 20
6888573 PID:4f2000a TID:4fa000a 2 \ 21
6888626 PID:4f2000a TID:4fc000a 3 \ 22
6888677 PID:4f2000a TID:4fa000a 2 \ 23
6888706 PID:4f2000a TID:4fc000a 3 \ 24
6888729 PID:4f2000a TID:4f9000a 1 \ 25
6888757 PID:4f2000a TID:4fa000a 2 \ 26
6888808 PID:4f2000a TID:4fc000a 3 \ 27
6888885 PID:4f2000a TID:4fa000a 2 \ 28
6888931 PID:4f2000a TID:4fc000a 3 \ 29
6888939 PID:4f2000a TID:4f9000a 1 \ 30
6888982 PID:4f2000a TID:4fa000a 2 \ 31
6889035 PID:4f2000a TID:4fc000a 3 \ 32
6889086 PID:4f2000a TID:4fa000a 2 \ 33
6889137 PID:4f2000a TID:4fc000a 3 \ 34
6889140 PID:4f2000a TID:4fa000a 2 \ 35
6889188 PID:4f2000a TID:4f9000a 1 \ 36
6889191 PID:4f2000a TID:4fc000a 3 \ 37
6889242 PID:4f2000a TID:4fa000a 2 \ 38
6889293 PID:4f2000a TID:4fc000a 3 \ 39
6889344 PID:4f2000a TID:4fa000a 2 \ 40
6889389 PID:4f2000a TID:4fc000a 3 \ 41
6889395 PID:4f2000a TID:4f9000a 1 \ 42
6889440 PID:4f2000a TID:4fa000a 2 \ 43
6889491 PID:4f2000a TID:4fc000a 3 \ 44
6889542 PID:4f2000a TID:4fa000a 2 \ 45
6889593 PID:4f2000a TID:4fc000a 3 \ 46
6889596 PID:4f2000a TID:4fa000a 2 \ 47
6889644 PID:4f2000a TID:4f9000a 1 \ 48
6889649 PID:4f2000a TID:4fc000a 3 \ 49
6889701 PID:4f2000a TID:4fa000a 2 \ 50
6889752 PID:4f2000a TID:4fc000a 3 \ 51
6889758 PID:4f2000a TID:4f3000a Shutting down...
6889818 PID:4f2000a TID:4fa000a 2 \ 52

9. Use the Remote Kernel Tracker to observe interaction between threads that are
using semaphore objects. Try to correlate the events you see with the debug
output and the source code.

Note This application terminates automatically. If you see the shutdown message in
the debug output, the application has already terminated. If Remote Kernel
Tracker was still running from the last Exercise, you should still be able see the
event information.

 Measure synchronization performance

10. Type s osbench –t 2 and press <Enter> at the Windows CE Command Prompt.
This will run the OSBench utility that tests the performance of various kernel API
calls. This particular command line will limit the testing to semaphores only.

11. Examine the OSBench output. You may wish to compare the performance of
semaphores to other synchronization methods.

If you are continuing with the next Hands-On Lab, keep your image running.

Lab 4-1: Using the Remote Registry
Editor

Objectives

• Use the Remote Registry Editor to explore and change the device registry.

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 20 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 4-1 Using the Remote Registry Editor

Exercise 1 Using the Remote Registry Editor
In this exercise, you will use the Windows CE Remote Registry Editor to examine and
modify the registry on the target device.

 Starting the Remote Registry Editor

1. Select Target | Remote Tools | Registry Editor from the Visual Studio menu.
Click OK to accept the Default Device connection.

2. Wait a few seconds for the connection to be established and for required files to
be transferred to the device.

Note The Remote Registry Editor also displays the registry of your development
workstation under the My Computer tree in the left hand pane. This tree will be
available even if you are not connected to the target device. Make sure you don’t
get confused about which registry you are viewing and/or editing.

 Explore the target device registry

3. In the left-hand pane of the Windows CE Remote Registry Editor, right-click on
Default Device and then click Find. This will bring up the Find dialog.

4. Type NE20001 in the Find dialog and click OK.

Lab 4-1 Using the Remote Registry Editor 3

5. The [HKEY_LOCAL_MACHINE\Comm\NE20001] is displayed.

6. Expand the NE20001 key and click on the Parms key.

 Modify the device registry

7. Right click the [HKEY_LOCAL_MACHINE\SOFTWARE] key and select
New | Key.

8. Create a key called GeneriCo and click OK.

4 Lab 4-1 Using the Remote Registry Editor

9. Right click on the new GeneriCo key and select New | String Value.

Lab 4-1 Using the Remote Registry Editor 5

10. Create the string value with the name MyString, and the value MyStringValue.

11. Click OK to create the value.

6 Lab 4-1 Using the Remote Registry Editor

12. Right click on the GeneriCo key and select New | Binary Value. This will bring
up the New Data Value dialog.

Lab 4-1 Using the Remote Registry Editor 7

13. Create a binary value with the name MyBinaryValue. In the Value box, type
0123456789abcdef and click OK. Notice that the editor groups the entry into
bytes, and adds an ASCII translation of the values in the right column of the value
box.

8 Lab 4-1 Using the Remote Registry Editor

Note You can also edit the ASCII translation area of this dialog box instead of typing in
binary values. There is no visible differentiator between the two areas in the
dialog, just click your mouse in the far right hand area if you wish to enter ASCII
text.

14. Right-click on MyBinaryValue and select Delete.

15. Confirm your intention to delete by clicking Yes.

Lab 4-1 Using the Remote Registry Editor 9

16. In the left-hand pane, right click on GeneriCo and select Rename.

17. Type GeneriCo2 and press Enter.

 Save a portion of the device registry to a file on the development workstation

18. In the left-hand pane of the Remote Registry Editor, highlight the
[HKLM\SOFTWARE\GeneriCo2] key.

19. Select Registry | Export Registry File from the Remote Registry Editor menu.

20. Save the file to your desktop as MyDeviceRegKey.txt.

WARNING It is possible to merge an exported Windows CE registry file into the
registry of your desktop system. This can result in catastrophic corruption
of the registry on your workstation. So be careful!

21. Open the MyDeviceRegKey.txt file using Visual Studio.

10 Lab 4-1 Using the Remote Registry Editor

22. Observe that the format of the Windows CE registry file is identical to that used
in other version of Microsoft Windows.

23. Close and delete MyDeviceRegKey.txt

24. Close the Remote Registry Editor.

Lab 4-2: Power Management

Objectives

• Introduce the Windows Embedded CE 6.0 power management architecture

• Utilize portions of the CE 6.0 Power Management architecture

• Become familiar with several Power Management APIs

• Allow a test application to receive notification about system power events and to
put power requirements into place

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 4-2 Power Management

Exercise 1
This exercise demonstrates portions of the Windows Embedded CE 6.0 power
management architecture. Several of the power management APIs are used, allowing the
test application to receive notification about system power events and to put power
requirements into place.

This lab will make use of the backlight driver to demonstrate the interaction between
applications and drivers in the realm of power management. We will modify a portion of
the existing backlight driver to better illustrate these concepts. We will rebuild the OS
run-time image to include the modified backlight driver and the test application.

 Add the existing Power_Management subproject to the OS Design

1. Copy the Power_Management subproject from the Student files to your OS
Design at C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign.

2. Right click on the Subprojects node in the Solution Explorer and select Add
Existing Subproject.

3. Select the Power_Management.pbpxml file from the Power_Management
folder.

4. This time, do not configure the subproject to be excluded from the image or built
as debug. We will rebuild the OS run-time image including the modules from this
subproject.

 Modify existing backlight driver

5. Expand the node C:/WINCE600 | PLATFORM | EVMBSP | src | drivers |
backlight | MDD | Include Files in the Solution Explorer.

6. Double click the file bkli.h to open the file in the Visual Studio editor.

7. Locate the #define ZONE_BACKLIGHT near the top of the file, and set it to 1.
This will cause the backlight driver to print debug messages when implementing
power management requests.

 Examine registry changes

8. Locate the Power_Management subproject in the Solution Explorer.

9. Open the file Power_Management.reg in the Parameter files node.

10. Examine the registry entries under
[HKLM\System\CurrentControlSet\Control\Power\State]. These registry

Lab 4-2 Power Management 3

entries override the default behavior for the backlight driver in each of the named
system power states. They cause the backlight driver to default to its low power
state instead of operating in its normal full power state.

11. Examine the registry entry under
[HKLM\System\CurrentControlSet\Control\Power\Timeouts]. This changes
the timeout period used by the Power Manager to determine when to move to the
User Idle state.

4 Lab 4-2 Power Management

Note The registry entries contained in subprojects are processed last when building the
OS run-time image. These registry entries override any entries that are defined by
operating system components or the BSP.

 Build and run the updated OS run-time image

12. Select Target | Detach Device from the Visual Studio menu to detach the
existing device image.

13. Close any remote tools that you may have open.

14. Select Build | Advanced Build Commands | Build Current BSP and
Subprojects from the Visual Studio menu.

15. Select Target | Attach Device from the Visual Studio menu to re-attach the
device.

 Examine Power_Management application

16. Open the Power_Management.cpp file from the Power_Management subproject
using Solution Explorer.

Lab 4-2 Power Management 5

17. Locate the PowerNotificationThread function. This secondary thread requests
notification about power management events using the
RequestPowerNotifications API. This thread allows the application to print out
a message each time the system power state changes.

18. Locate the WinMain function. This function calls the SetPowerRequirement
API against the backlight driver, forcing the backlight driver into a higher power
state (D0). The ReleasePowerRequirement allows the backlight to return to its
normal state (D4).

 Run Power_Management application

19. Launch the Power_Management.exe application using Target | Run Programs
from the Visual Studio menu.

20. Observe debug messages in the Output window similar to the following:

 76711 PID:423000e TID:43f000e Power Notification Message: PBT_POWERINFOCHANGE
 76711 PID:423000e TID:43f000e Length: 28
 76711 PID:423000e TID:43f000e BatteryLifeTime = -1
 76711 PID:423000e TID:43f000e BatterFullLifeTime = -1
 76711 PID:423000e TID:43f000e BackupBatteryLifeTime = -1
 76711 PID:423000e TID:43f000e BackupBatteryFullLifeTime = -1
 76711 PID:423000e TID:43f000e ACLineStatus = 255
 76711 PID:423000e TID:43f000e BatteryFlag = 255
 76711 PID:423000e TID:43f000e BatteryLifePercent = 255
 76711 PID:423000e TID:43f000e BackupBatteryFlag = 255
 76711 PID:423000e TID:43f000e BackupBatteryLifePercent = 255

Analysis These messages come from the PowerNotificationThread, which received
a PBT_POWERINFOCHANGE message. This message provides
information from the battery driver about the state of the power sources on
the device.

21. Click the OK button on the Power dialog box on the device. Observe the
following debug messages in the Visual Studio Output window:

 150459 PID:423000e TID:43f000e Power Notification Message: PBT_TRANSITION
 150459 PID:423000e TID:43f000e Flags: 11000000
 150459 PID:423000e TID:43f000e Length: 18
 150459 PID:423000e TID:43f000e SystemPowerState: on
 150459 PID:423000e TID:43f000e BKL_IOControl IOCTL code = 3280904
 150459 PID:423000e TID:43f000e BKL: Received IOCTL_POWER_SET
 150459 PID:423000e TID:43f000e IOCTL_POWER_SET to D0

Followed shortly by:

 450461 PID:423000e TID:43f000e Power Notification Message: PBT_TRANSITION
 450461 PID:423000e TID:43f000e Flags: 0
 450461 PID:423000e TID:43f000e Length: 22
 450461 PID:423000e TID:43f000e SystemPowerState: systemidle

6 Lab 4-2 Power Management

Analysis These messages show a system power state change to on, because we
clicked a button on the screen. In addition, the backlight driver was forced
to move to the D0 state because the application called
SetPowerRequirement against it. The application subsequently received
notification that the device changed to a system power state of useridle
after 5 seconds of inactivity.

22. Click the OK button on the Power dialog box on the device. This will cause the
application to release the power requirement on the backlight, resulting in debug
message output similar to the following:

150459 PID:423000e TID:43f000e Power Notification Message: PBT_TRANSITION
 150459 PID:423000e TID:43f000e Flags: 11000000
 150459 PID:423000e TID:43f000e Length: 18
 150459 PID:423000e TID:43f000e SystemPowerState: on
 150459 PID:423000e TID:43f000e BKL_IOControl IOCTL code = 3280904
 150459 PID:423000e TID:43f000e BKL: Received IOCTL_POWER_SET

 150459 PID:423000e TID:43f000e IOCTL_POWER_SET to D0
450461 PID:423000e TID:43f000e Power Notification Message: PBT_TRANSITION
 450461 PID:423000e TID:43f000e Flags: 0
 450461 PID:423000e TID:43f000e Length: 22
 450461 PID:423000e TID:43f000e SystemPowerState: systemidle

23. Click the OK button on the Power dialog box again. This will cause the
application to exit.

Lab 5-1: Static and Dynamic Libraries

Objectives

• Create simple static library

• Link the static library with a dynamic library

• Link the dynamic library with an executable

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 45 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 5-1 Static and Dynamic Libraries

Exercise 1 Create a static library (LIB)
In this exercise you will create a static library with routines that you will later link to
when you build a dynamic library and an executable.

Note This exercise involves a bit of typing; if you perfer you may copy the text from
the Student files.

 Create a static library subproject

1. Select Project | Add New Subproject… from the Visual Studio menu. This will
bring up the Windows CE Subproject Wizard.

2. Select the WCE Static Library template.

3. Set the Subproject name to Power_Status and click Next.

4. Check the Precompiled header box.

5. Click Finish.

6. Configure the Power_Status subproject to be excluded from the image and
always build and link as debug, as documented in Lab 2-2.

 Create files

7. Right click on the Power_Status subproject in the Solution Explorer and select
Add | New Item…

8. Select the Code category, the C++ File (.cpp) template, and then type
Power_ON_OFF in the name field.

Lab 5-1 Static and Dynamic Libraries 3

9. Click on Add to add the new file.

10. Right click on the Power_Status subproject in the Solution Explorer and select
Add | New Item…

11. Select the Code category, the Header File (.h) template, and then type
Power_Status in the name field.

12. Click on Add to add the new file.

13. Using the Solution Explorer, locate the Power_ON_OFF.cpp file in the
Power_Status subproject and open it.

14. Add the following code to the Power_ON_OFF.cpp file:

#include "stdafx.h"

LPCTSTR g_StrOn = L"Power is on";
LPCTSTR g_StrOff = L"Power is off";

LPCTSTR PowerOn()
{
 return g_StrOn;
}
LPCTSTR PowerOff()
{
 return g_StrOff;
}

4 Lab 5-1 Static and Dynamic Libraries

15. Save and close Power_ON_OFF.cpp.

16. Expand the Include files node in the Power_Status subproject and open stdafx.h

17. Add an include for <windows.h> as follows:

// TODO: reference additional headers your program requires here
#include <windows.h>

18. Save and close stdafx.h.

19. Using the Solution Explorer, locate the Power_Status.h file in the Power_Status
subproject and open it.

20. Add the following to Power_Status.h:

extern LPCTSTR PowerOff(void);
extern LPCTSTR PowerOn(void);

21. Save and close Power_Status.h.

 Build the library

22. Right click the Power_Status subproject in the Solution Explorer and select
Build.

Lab 5-1 Static and Dynamic Libraries 5

Exercise 2 Create a dynamic library (DLL)
In this exercise you will create a dynamic library that will link with the static library you
created previously.

Note This exercise involves a bit of typing; if you perfer you may copy the text from
the Student files.

 Create the dynamic library subproject

1. Select Project | Add New Subproject… from the Visual Studio menu.

2. Select the WCE Dynamic-Link Library template.

3. Set the Subproject name to ScanBarcode and click Next.

4. Select A simple Windows Embedded CE DLL subproject and click Finish.

5. Configure the ScanBarcode subproject to be excluded from the image and
always build and link as debug, as documented in Lab 2-2.

 Edit source files for DLL project

6. In the Solution Explorer, right-click on the ScanBarcode subproject, and then
select Add | New Item…

7. Select the Code category, the Header File (.h) template, and then type
ScanBarcode in the name field.

8. Using the Solution Explorer, open the ScanBarcode.h file from the ScanBarcode
subproject.

9. Add the following code to the ScanBarcode.h file:

#include <windows.h>

EXTERN_C LPCTSTR ScanBarcode(void);
EXTERN_C LPCTSTR ScanPowerOff(void);
EXTERN_C LPCTSTR ScanPowerOn(void);

10. Using the Solution Explorer, open the ScanBarcode.def file from the Parameter
files node in the ScanBarcode subproject.

11. Add the following to the DEF file:

LIBRARY ScanBarcode

6 Lab 5-1 Static and Dynamic Libraries

EXPORTS
 ScanPowerOff
 ScanPowerOn

 ScanBarcode

12. Save and close ScanBarcode.def.

13. Using the Solution Explorer, open the ScanBarcode.cpp file from the
ScanBarcode subproject.

14. Add an include statement for Power_Status.h as follows:

// ScanBarcode.cpp : Defines the entry point for the DLL
application.
//

#include "stdafx.h"
#include "Power_Status.h"

BOOL APIENTRY DllMain(HANDLE hModule,

 DWORD ul_reason_for_call,
 LPVOID lpReserved
)

{
 return TRUE;
}

15. Add the following code snippet to ScanBarcode.cpp after the inclusion of
Power_Status.h.

LPCTSTR g_StrScan = L"123456789ABC";

EXTERN_C LPCTSTR ScanBarcode(void)
{
 return g_StrScan;
}

EXTERN_C LPCTSTR ScanPowerOn(void)
{
 return PowerOn();
}

EXTERN_C LPCTSTR ScanPowerOff(void)
{
 return PowerOff();
}

16. Save and close ScanBarcode.cpp.

Lab 5-1 Static and Dynamic Libraries 7

 Link to static library

17. Right click on the ScanBarcode subproject node in the Solution Explorer, and
then select Open. The ScanBarcode SOURCES file will open.

18. Locate the section of the file containing TARGETLIBS.

19. Add a reference to the Power_Status.lib static library by modifying this section as
follows:

TARGETLIBS= \
$(_PROJECTROOT)\cesysgen\sdk\lib\$(_CPUINDPATH)\coredll.lib \
$(PBWORKSPACEROOT)\Power_Status\obj\$(_CPUINDPATH)\Power_Status.lib \

Note The trailing backslash characters on each line are line continuation characters.
Ensure that there is no white space after them. Also, ensure that there is a blank
line following the last line.

20. Add the path to directory containing the Power_Status.h header file by adding the
following to the bottom of the SOURCES file:

INCLUDES= \
 $(PBWORKSPACEROOT)\Power_Status \

Note Ensure that there is at least one blank line prior to the line containing the
INCLUDES directive. This ensures that there are no line continuation characters
prior to this statement that are still in effect.

21. Save and close the SOURCES file.

22. Right click on the ScanBarcode subproject in the Solution Explorer and select
Properties.

23. Select the C/C++ tab and observe the Include Directories entry. Notice that the
directory you just added with the INCLUDES directive in the SOURCES file is
listed here.

24. Select the Link tab and observe the Additional Libraries entry. Notice that the
library you just added with the TARGETLIBS directive in the SOURCES file is
listed at the end of this line.

Note The SOURCES file itself controls the build rules for the subproject. The
graphical user interface shown here provides an alternate way to view and modify
this file.

8 Lab 5-1 Static and Dynamic Libraries

25. Select Cancel to close this dialog without making any changes.

 Build the library

26. Right click the ScanBarcode subproject in the Solution Explorer and select
Build.

Lab 5-1 Static and Dynamic Libraries 9

 Exercise 3 Create an executable (EXE)
In this exercise you will create an executable that uses functionality from the dynamic
library you just created.

 Adding existing application subproject

1. Copy the BarcodeDllTest subproject from the Student files to your OS Design at
C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign.

2. Right click on the Subprojects node in the Solution Explorer and select Add
Existing Subproject.

3. Select the BarcodeDllTest.pbpxml file from the BarcodeDllTest folder.

4. Configure the BarcodeDllTest subproject to be excluded from the image and
always build and link as debug, as documented in Lab 2-2.

 Add reference to dll

5. Right click on the BarcodeDllTest subproject in the Solution Explorer and select
Open.

6. Add the following to the bottom of the file:

INCLUDES= \
$(PBWORKSPACEROOT)\ScanBarcode \

Note Ensure that there is a blank line preceding the INCLUDES directive. Ensure there
is no whitespace after the trailing backslashes.

7. Locate the TARGETLIBS directive and add a reference to ScanBarcode.lib as
follows:

TARGETLIBS= \
 $(_PROJECTROOT)\cesysgen\sdk\lib\$(_CPUINDPATH)\coredll.lib \
 $(PBWORKSPACEROOT)\ScanBarcode\obj\$(_CPUINDPATH)\ScanBarcode.lib \

Note Ensure that there is a blank line after the line containing ScanBarcode.lib. Ensure
there is no white space after the trailing backslashes.

8. Save and close the sources file.

9. Right click on the BarcodeDllTest subproject and select Build.

10 Lab 5-1 Static and Dynamic Libraries

 Run the BarcodeDllTest application

10. Launch BarcodeDllTest.exe using Target | Run Programs from the Visual
Studio menu.

11. The BarcodeDllTest.exe application will present the following user interface.
You can exercise it by clicking on the various buttons.

This simple application makes calls into the linked Scanbarcode.dll dynamic library,
which includes functionality from the Power_Status.lib static library. You may wish to
set breakpoints on functions in these modules and view the call stacks to see how they are
eventually called from the application.

Lab 5-2: Command Line Build

Objectives

• Learn how some of the build commands available in the Visual Studio IDE map
to command line actions

• Compare IDE and command line build mechanisms

Prerequisites

• Completed Lab 2-2

Estimated time to complete this lab: 20 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-2

2 Lab 5-2 Command Line Build

Exercise 1 Project build in command line
This exercise will demonstrate how some of the build commands available in the Visual
Studio IDE map to command line actions. All of the build commands that are accessible
from the Visual Studio IDE eventually resolve to command line actions. You will see
how to determine what these mappings are.

We will use the MyHelloWorldApp subproject that we created at the beginning of this
course to point out some of the build commands.

 Build the MyHelloWorldApp subproject from the IDE

1. Detach the target if attached.

2. Right click on the MyHelloWorldApp subproject and choose Build. Observe the
Build Output window.

3. Observe the circled commands. This is a compound statement that consists of
two commands. First, the environment variable WINCEREL is set to 1 and then
the build command is issued.

4. Select Build | Targeted Build Settings | Make Run-Time Image After
Building on the Visual Studio menu. Selecting this menu item should cause it to
become checked.

Note We disabled this option previously because we generally did not want the run-
time image to be built after each targeted build. We are enabling it here to show
its functionality.

Lab 5-2 Command Line Build 3

5. Clear the Build Output window by right clicking in it and selecting Clear All.

6. Right click on the MyHelloWorldApp subproject and choose Rebuild. Observe
the Build Output window.

7. Observe the circled commands. This time there are three commands. The build
command has the –c parameter, causing clean build to be performed. The clean
build was performed because we chose Rebuild instead of Build from the menu.
The last command is makeimg, which builds the OS run-time image. This
command is performed because we selected the option to Make Run-Time
Image After Building for targeted builds.

4 Lab 5-2 Command Line Build

 Build the MyHelloWorldApp subproject from the command line

8. Right click on the MyHelloWorldApp subproject and select Open Build
Window. The following window is displayed:

Note This is not a generic DOS command shell. This command shell has been
automatically configured for Windows Embedded CE 6.0 builds. You can not
simply launch a generic DOS command shell and be able to do CE builds without
configuring the build environment properly.

9. Type set at the command prompt and press <Enter>. Observe the many
environment variables specific to Windows Embedded CE that have been
configured. Notice that WINCEREL is one of those variables.

Lab 5-2 Command Line Build 5

Note The WINCEREL environment variable causes the build mechanism to
automatically copy the build output files to the flat release directory. This makes
the build output files immediately available to be included in the OS run-time
image, or to be loaded from the flat release directory using the debug shell.

10. Type build –c at the command line.

11. Compare the build output here with the information in the Build Output window.
Notice that they are the same.

6 Lab 5-2 Command Line Build

12. Type makeimg at the command line. This command causes the OS run-time
image to be built.

13. Compare the makeimg output here with the corresponding portion in the Build
Output window. Notice that they are the same.

Lab 5-2 Command Line Build 7

14. Close the build window.

15. Select Build | Targeted Build Settings | Make Run-Time Image After
Building from the Visual Studio menu to disable this option. We do not want to
burden future targeted builds with this build step.

Lab 5-3: Troubleshooting Link Errors

Objectives

• Identify linker errors

• Learn how to determine the correct link library

• Resolve link errors

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 20 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 5-3 Troubleshooting Link Errors

Exercise 1 Troubleshoot build errors
In this exercise you will identify a linker error and resolve it.

 Add the existing TroubleShoot_Build subproject

1. Copy the TroubleShoot_Build subproject from the Student files to your OS
Design at C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign.

2. Right click on the Subprojects node in the Solution Explorer and select Add
Existing Subproject.

3. Select the TroubleShoot_Build.pbpxml file from the TroubleShoot_Build
folder.

4. Configure the TroubleShoot_Build subproject to be excluded from the image
and always build and link as debug, as documented in Lab 2-2.

5. Using the Solution Explorer, open the file TroubleShoot_Build.cpp from the
TroubleShoot_Build subproject. Notice that it is simply a call to MessageBox:

MessageBox(NULL, TEXT("Hello World!!"), TEXT("TroubleShoot App. is created!!")
,MB_OK);

Lab 5-3 Troubleshooting Link Errors 3

 Build the subproject.

6. Right click on the TroubleShoot_Build subproject and select Build. Note error
messages in the Build Output window similar to the following:

7. Observe that the error occurred during the link phase. The functions
MessageBoxW and TerminateProcess could not be resolved. These functions
are contained in an external library. The problem with this build is not in the
application source code, but with the subproject settings that determine the
external libraries that are used. We need to determine the correct library to
resolve these functions.

 Identify library

8. Select Edit | Find and Replace | Find in Files from the Visual Studio menu.
This will bring up the Find and Replace dialog.

9. Type MessageBoxW in the Find what box.

10. Type C:\WINCE600\PUBLIC\COMMON\OAK\LIB\ARMV4I\RETAIL in
the Look in: box. You can also navigate to this folder and select it using the
Choose Search Folders button on the far right hand side of this box.

11. Expand the Find options box and enter *.def in the Look at these file types:
box.

12. Click Find All to perform the search.

4 Lab 5-3 Troubleshooting Link Errors

13. Observe that the MessageBoxW function is exported by coredll.def and
k.coredll.def. Therefore we need to link against coredll in order to resolve this
link error.

14. Repeat this process for TerminateProcess.

15. Observe that TerminateProcess is also exported by coredll. Coredll will resolve
both link errors for us.

Note This same general procedure can be followed for link errors that arise due to
functionality contained in dynamic link libraries. The .def files will indicate
which dll contains the desired functionality. However, not all .def files are
located in the Common subtree. Each of the primary subtrees under \PUBLIC
contain their own functionality, and their own .def files. You may need to search
those trees as well in order to find the correct dll.

 Add the correct link library

16. Right click on the TroubleShoot_Build subproject and select Open. The
SOURCES file for this subproject will open.

17. Observe that there is no TARGETLIBS directive. We will add one with an entry
for coredll.

18. Add the following to the bottom of the SOURCES file:

TARGETLIBS= \
 $(_PROJECTROOT)\cesysgen\sdk\lib\$(_CPUINDPATH)\coredll.lib \

Note Ensure that there is a blank line prior to the TARGETLIBS directive. Ensure that
there is no what space after the trailing backslashes.

 Also note that the path used to resolve coredll.lib is not the original location in the
\PUBLIC\COMMON tree. Instead, it resolves to the filtered version of coredll.lib
located in the project directory. This ensures that we link against the version of
coredll.lib that was componentized for our OS Design.

19. Save and close the SOURCES file.

20. Right click on the TroubleShoot_Build subproject and select Build. Observe
that the errors have been resolved, the build is successful.

Lab 6-1: Registry Initialization

Objectives

• Understand that multiple sources provide initial registry content

• Understand registry source precedence when conflicts occur

• Use the Run-Time Image Viewer to observe content in the OS Run-Time image

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 20 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 6-1 Registry Initialization

Exercise 1
In this exercise you will learn how the various registry files in the OS Design are
combined to create the final device registry. You will observe how conflicting registry
entries are resolved.

 Add a new key to platform.reg

1. Expand the C:/WINCE600 node under EVMOSDesign in the Solution Explorer.
Navigate to Platform/EVMBSP/Parameter Files.

2. Double click on platform.reg to open it in the Visual Studio editor.

3. Navigate to HKEY_LOCAL_MACHINE then right-click on the Software key
and select New | Key.

4. Name the new key HelloWorld.

Lab 6-1 Registry Initialization 3

5. Right click on the HelloWorld key and select New | String Value. Name the
new value PlatformMessage.

4 Lab 6-1 Registry Initialization

6. Right click on the PlatformMessage value and select Properties.

7. Type Hello from platform.reg in the Data field.

8. Save and close platform.reg.

Lab 6-1 Registry Initialization 5

 Build the modified BSP

9. Detach from the device if connected.

10. Select Build | Advanced Build Commands| Build Current BSP and
Subprojects from the Visual Studio menu.

6 Lab 6-1 Registry Initialization

Lab 6-1 Registry Initialization 7

Note This command will also cause the OS Run-Time Image to be rebuilt due to the
setting in Build | Global Build Settings | Make Run-Time Image After Build.

 Observe the change using the Run-Time Image Viewer

11. Select File | Open | File… from the Visual Studio menu.

12. Select Windows Embedded CE Run-Time Image from the Files of Type drop
down box.

13. Navigate to your flat release directory at
C:\WINCE600\EVMOSDesign\EVMOSDesign\RelDir\EVMBSP_ARMV4I_Release
and open nk.bin. The OS run-time image will open in the Run-Time Image Viewer.

14. Select NK, then double click on Registry. Navigate to
HKEY_LOCAL_MACHINE\Software and verify the HelloWorld key exists in
the image with the PlatformMessage value.

15. Close the file.

 Add a new key to project.reg in the OS Design

16. Expand the Parameter Files node under the EVMOSDesign project in the
Solution Explorer.

17. Expand the EVMBSP: ARMV4I (Active) node and open the project.reg file.

18. Right-click on HKEY_LOCAL_MACHINE and add a new key called
Software.

19. Right click on the Software key and add a new key called HelloWorld.

20. Right click on the HelloWorld key and add a String Value with the name
ProjectMessage.

21. Set the value of ProjectMessage to Hello from project.reg.

22. Save and close the file.

 Build the OS run-time image

23. Select Build | Advanced Build Commands| Build Current BSP and
Subprojects from the Visual Studio menu.

8 Lab 6-1 Registry Initialization

 Observe the change using the Run-Time Image Viewer

24. Select File | Open | File… from the Visual Studio menu. In the file open box,
select Windows CE Run-Time Image from the Files of Type drop down box.

25. Open nk.bin from the flat release directory. The OS run-time image will open in
the Run-Time Image Viewer.

26. Select NK, then Registry. Navigate to HKEY_LOCAL_MACHINE\Software
and verify the HelloWorld key exists in the image with the ProjectMessage
value.

27. Close the file.

 Dueling Registry Entries

28. Open platform.reg and navigate to the
[HKEY_LOCAL_MACHINE\Software\HelloWorld] key.

29. Create a new String value named Conflicting with the value Platform.reg wins!.

30. Open project.reg and navigate to the
[HKEY_LOCAL_MACHINES\Software\HelloWorld] key.

31. Create a new String value named Conflicting with the value Project.reg wins!.

32. Save and close both files.

33. Select Build | Advanced Build Commands| Build Current BSP and
Subprojects from the Visual Studio menu.

34. Open the OS run-time image file from your flat release directory

35. Navigate to [HKEY_LOCAL_MACHINE\Software\HelloWorld] and view the
Conflicting value. This will tell you which file has precedence in the build
process.

Note There are more registry files involved in the build process than just project.reg
and platform.reg. Each of the OS subtrees also provides registry content, as do
the subprojects that might be added to an OS Design. There is a defined order
with all of these potential registry sources.

36. Close the run-time image file.

Lab 6-2: Adding a New IOCTL to the
OAL

Objectives

• Understand architecture of OAL IOCTL library in the Common code

• Understand how to add a new IOCTL to the OAL based on the Common code

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 20 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

2 Lab 6-2 Adding a New IOCTL to the OAL

Exercise 1 Adding an IOCTL to the OAL
In this exercise you will add a new IOCTL to the OAL and demonstrate that it is
working. The OAL exposes IOCTLs via the OEMIoControl() function. The libraries
that are provided in the Platform\Common subdirectory include an implementation for
the OEMIoControl() function. If the OAL in your BSP is based on the PQOAL
architecture, or just uses this particular library from the Platform\Common code base you
will use this method to add IOCTL support to your OAL.

We will first examine the implementation of the OEMIoControl() function in the
Common code, then we will implement IOCTL_HAL_POSTINIT and verify that our
implementation was successful.

 Review Common code implementation of OEMIoControl

1. Open the file ioctl.c located in
C:\WINCE600\PLATFORM\COMMON\SRC\COMMON\IOCTL

2. Observe that this file contains the required function OEMIoControl(). This
function is called by the kernel to implement all of the IOCTLs that are supported
by the OAL. BSPs that link against the library containing this source code will
use this implementation of OEMIoControl().

3. Observe that this function uses a global data structure named g_oalIoCtlTable
containing the IOCTL codes and function pointers to implement them. BSPs that
use the Common code to implement OEMIoControl() configure the function
using this global data structure.

4. Close the file ioctl.c.

5. Open the file ioctl.c located in
C:\WINCE600\PLATFORM\EVMBSP\SRC\OAL\OALLIB

6. Observe that this file contains the data structure g_oalIoCtlTable near the bottom
of the file. This data structure is the one referenced by the OEMIoControl()
function in the Common code. Note that this data structure is implemented using
the header file ioctl_tab.h.

7. Also observe that this file contains routines that implement individual IOCTLs.

8. Open the file ioctl_tab.h located in
C:\WINCE600\PLATFORM\EVMBSP\SRC\INC

Lab 6-2 Adding a New IOCTL to the OAL 3

9. Observe that this file contains the pairing of IOCTL codes and the function
pointers that implement them. The routines listed in this file are implemented
directly in the BSP in the ioctl.c file mentioned above.

10. Observe that this file also includes the file oal_ioctl_tab.h. This file contains a
list of IOCTL codes and function pointers for common IOCTLs that are already
implemented in the Common code base. IOCTLs listed in that file do not have to
be implemented in the BSP unless different functionality is needed.

 Add IOCTL_HAL_POSTINIT handler to the BSP

11. Add the following code snippet to the file ioctl.c located at
C:\WINCE600\PLATFORM\EVMBSP\SRC\OAL\OALLIB. The routine
should be added just above the g_oalIoCtlTable data structure.

4 Lab 6-2 Adding a New IOCTL to the OAL

static BOOL
OALIoCtlHalPostInit(
 UINT32 code, VOID *pInpBuffer, UINT32 inpSize, VOID *pOutBuffer,
 UINT32 outSize, UINT32 *pOutSize
)
{
 RETAILMSG(1, (TEXT("Hello World from IOCTL_HAL_POSTINIT!!!!\r\n")));

return TRUE;
}

12. Add the following line to the file ioct_tab.h located at
C:\WINCE600\PLATFORM\EVMBSP\SRC\INC. The line should be added just
below the { IOCTL_HAL_POSTINIT, 0, OALIoCtlHalPostInit }, line.

#include <oal_ioctl_tab.h>

Lab 6-2 Adding a New IOCTL to the OAL 5

13. Select Build | Advanced Build Commands | Build Current BSP and
Subprojects from the Visual Studio menu.

14. Attach the device and view the output. You should see the following message
printed on the Debug Output window during the boot process.

 Hello World from IOCTL_HAL _POSTINIT!!!!

Lab 7-1: Integrating a Device Driver

Objectives

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 7-1 Integrating a Device Driver

Exercise 1 Integrate barcode scanner driver into BSP
The purpose of this exercise is to integrate a driver into the BSP. In this exercise you will

• Add the driver subdirectory containing the driver source code to the BSP

• Add the appropriate bib entry to cause the driver to be included in the OS image

• Add the appropriate registry entries to cause the drive to be loaded at boot

• Update the BSP catalog file to support the new driver

• Build a debug OS run-time image that we will use in future labs

 Add driver source code to BSP directory

1. Detach from the device if connected.

2. Copy the BARCODE directory from Student files to the
C:\WINCE600\PLATFORM\EVMBSP\SRC\DRIVERS directory.

Lab 7-1 Integrating a Device Driver 3

3. In Visual Studio, double click the
C:\WINCE600\PLATFORM\EVMBSP\src\drivers node in the Solution
Explorer. This will open the Dirs file.

4. Add the following line to the end of the Dirs file directly after the
@CESYSGEN ENDIF CE_MODULES_DEVICE line:

barcode \

5. Save and close the Dirs file.

 Add Driver to image

1. Open the platform.bib file in the Parameter Files node of the EVMBSP in the
Solution Explorer.

2. Add the following lines near the top of platform.bib as the first entry in the
MODULES section.

IF BSP_BARCODE
 barcode.dll $(_FLATRELEASEDIR)\barcode.dll NK SHK
ENDIF

4 Lab 7-1 Integrating a Device Driver

Lab 7-1 Integrating a Device Driver 5

When you are done, the top of the file should look similar to the following:

;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;
; Use of this source code is subject to the terms of the Microsoft end-user
; license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
; If you did not accept the terms of the EULA, you are not authorized to use
; this source code. For a copy of the EULA, please see the LICENSE.RTF on your
; install media.
;

MODULES

; Name Path Memory Type
; -------------- ---------------------------------- -----------
IF BSP_BARCODE
 barcode.dll $(_FLATRELEASEDIR)\barcode.dll NK SHK
ENDIF

; @CESYSGEN IF CE_MODULES_DISPLAY
IF BSP_NODISPLAY !
 TrainingBSP_lcd.dll $(_FLATRELEASEDIR)\EVM_3530_lcd.dll NK SHK
; @CESYSGEN IF SHELLW_MODULES_GX
; @XIPREGION IF MISC_TRAININGBSP_BIB

. . .

3. Save and close the file.

 Add registry settings

1. Open the file Platform.reg from the Parameter Files node of the EVMBSP using
the Solution Explorer.

2. Right click on the [HKEY_LOCAL_MACHINE\Drivers\BuiltIn] key and add
a new key with the name Barcode.

3. Add a String Value to the Barcode key with the name Dll and value
Barcode.dll.

4. Add a second String Value to the Barcode key with the name Prefix and value
BAR.

5. Save and close the file.

 Add driver to the catalog

1. From the Visual Studio menu, select File | Open | File … and navigate to the
C:\WINCE600\PLATFORM\EVMBSP\CATALOG folder.

2. Change the file mask to show Files of type: All Files (*.*)

3. Open the EVMBSP.pbcxml file.

6 Lab 7-1 Integrating a Device Driver

Note If no nodes are visible underneath Catalog in the Catalog Editor, click the Show
All Catalog Files button.

4. Expand the catalog tree to show the Device Drivers node.

5. Right click on the Device Drivers node and select Add Catalog Item. The new
item will be placed in the Third Party node.

6. Set the Description field to Barcode Scanner.

7. Set the Title field to Barcode Scanner.

8. Set the Unique Id field to Item:GeneriCo:BarcodeScanner.

9. Set the Additional Variables field to BSP_BARCODE.

10. Set the Modules field to barcode.dll.

11. Save and close the file.

 Add barcode scanner driver to image

1. Switch to the Catalog Items View and refresh the Catalog.

2. Expand the EVMBSP node under Third Party.

Note Ensure that the Filter option is set to All Items in the Catalog. The Filter option is
a drop down box in the upper right hand corner of the Catalog Items View.

3. Select the Barcode Scanner item under Device Drivers. Refresh the Catalog
View if necessary to see the Barcode Scanner.

4. Select Build | Advanced Build Commands | Build Current BSP and
Subprojects from the Visual Studio menu.

 Verify integration using Image Viewer

1. Open the NK.bin file located in the flat release directory using Visual Studio.
This will bring up the Run-Time Image Viewer.

2. Click on the (All Files) node in the Image Explorer. This shows all files that are
built into the OS run time image.

3. Verify that barcode.dll is listed.

Lab 7-1 Integrating a Device Driver 7

4. Verify that the [HKLM\Drivers\BuiltIn\Barcode] key exists under the registry
node.

5. Close the Image Viewer.

 Build a Debug OS image

1. Select Build | Configuration Manager… using the Visual Studio menu.

2. Set the Active solution configuration to EVMBSP ARMV4I Debug.

3. Remove the following subprojects from the OS Design by right-clicking on the
subproject in the Solution Explorer view and selecting Remove:

• MyHelloWorldApp
• HeapTest1
• LeakingMemory
• ThreadSynchronization
• MutexDemo
• EventDemo
• SemaphoreDemo
• Power_Management
• Troubleshoot_Build

4. Right-click EVMOSDesign in the Solution Explorer view and select Properties.

5. Under the Configuration Properties section, select Environment

6. Click New and set the environment Variable Name to BSP_DSPLINK and the
Variable Value to 0

7. Click OK to close the Environment Variable dialog box and OK to close the
EVMOSDesign Property Pages window

8. Select Build | Build Solution using the Visual Studio menu. This will build a
debug configuration that we will use in future labs.

Lab 7-2: Debugging the Scanner
Device Driver

Objectives

• Understand driver interaction with application

• Use kernel debugger to investigate call stack

Prerequisites

• Completed Lab 2-1

• Completed Lab 7-1

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1 with CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

• Image from Lab 7-1

• Debug build for the EVMOSDesign

2 Lab 7-2 Debugging the Scanner Device Driver

Exercise 1 Application and Driver Integration
In this exercise you will add an application that communicates with the barcode scanner
device driver. You will exercise the functionality of the driver and function call tree that
results when the application calls into the driver.

 Add BarcodeTest1 application subproject to your OSDesign

1. Copy the BarcodeTest1 folder from your Student files to
C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign

2. Right click on the Subprojects node in the Solution Explorer and select Add
Existing Subproject...

3. Add the BarcodeTest1 subproject to your OS Design.

4. Configure the BarcodeTest1 subproject to be excluded from the image and
always build and link as debug, as documented in Lab 2-2.

5. Right click on the BarcodeTest1 subproject in the Solution Explorer and select
Build.

Lab 7-2 Debugging the Scanner Device Driver 3

 Run test application on OS image

6. Attach the device by selecting Target | Attach Device from the Visual Studio
menu.

Note This lab uses an updated version of the OS run time image. You will need to first
detach from the existing device instance if it is still running.

7. Open the BarcodeTest1.cpp file in the BarcodeTest1 subproject using the
Solution Explorer.

8. Set a breakpoint on the call to DeviceIoControl().

9. Run the BarcodeTest1 application using Target | Run Programs… from the
Visual Studio menu. The debugger will halt execution at the breakpoint.

10. Select Debug | Windows | Call Stack from the Visual Studio menu to show the
call stack. This window shows the sequence of calls that resulted in the statement
containing the breakpoint. You can double click any of the calling functions to
view the source code file containing each function.

Note The source code for the functions listed in this window is only available if you
have installed the Shared Source. Only the disassembly view is available if the
source code is not installed.

11. Step through the application by pressing F10 through completion.

4 Lab 7-2 Debugging the Scanner Device Driver

 Add additional functionality to test application and retest

12. Locate the comment // Turn on power and add the following function call:

// Turn on power
DeviceIoControl(hBARPort, BARCODE_IOCTL_POWER_ON, NULL, 0, NULL,
0, &dwNumBytesRead, NULL);

13. Locate the comment // Check to make sure power is on and add the following
function call:

// Check to make sure power is on
DeviceIoControl(hBARPort, BARCODE_IOCTL_QUERY_POWER_STATE, NULL,
0, &dwResult, sizeof(DWORD), &dwNumBytesRead, NULL);
_tprintf(_T("Power Status = %d.\n"),dwResult);

14. Right click on the BarcodeTest1 subproject and select Build.

15. Run the BarcodeTest1 application using Target | Run Programs… from the
Visual Studio menu. The debugger will halt execution at the breakpoint.

16. Press F5

17. Observe debug messages in the Output window similar to the following:

Test BAR1: driver open/close.
Barcode.DLL: +BAR_Open
Barcode.DLL: -BAR_Open
CreateFile returned a valid handle.
Barcode.DLL: +BAR_IOControl
Barcode.DLL: IOCTL - Set Power Management
Barcode.DLL: -BAR_IOControl
Barcode.DLL: +BAR_IOControl
Barcode.DLL: IOCTL - Power On Command.
Barcode.DLL: +BAR_PowerUp
Barcode.DLL: -BAR_PowerUp
Barcode.DLL: -BAR_IOControl
Barcode.DLL: +BAR_IOControl
Barcode.DLL: IOCTL - Query Power State
Barcode.DLL: -BAR_IOControl
Power Status = 1.
Barcode.DLL: +BAR_IOControl
Barcode.DLL: IOCTL - Read Barcode.
Barcode.DLL: -BAR_IOControl
Driver: bytes read=7.
Driver: buffer='
0
0
2
5
2
3
'

Barcode.DLL: +BAR_Close
Barcode.DLL: -BAR_Close

Lab 7-3: Using Debug Zones in a
DLL

Objectives

• Learn to implement debug zones in a dll

Prerequisites

• Completed Lab 2-1

• Completed Lab 5-1

• Completed Lab 7-1

• Completed Lab 7-2

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1 with CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running debug image from Lab 7-2

2 Lab 7-3 Using Debug Zones in a DLL

Exercise 1 Integrate debug zones
In this exercise, you will implement debug zones in the ScanBarcode dll, and test the
implementation using the BarcodeDllTest application. This exercise requires a debug OS
run-time image on the EVM Board.

 Create the debug zones

1. Right click the ScanBarcode subproject in the Solution Explorer View and select
Add | New Item….

2. In the Add New Item Dialog box, select Header File(.h) and name the file
DbgZones.h.

3. Add the following code snippet to the new DbgZones.h file:

#include <DBGAPI.H>

#define DEBUGMASK(n) (0x00000001<<n)
#define MASK_INIT DEBUGMASK(0)
#define MASK_ON DEBUGMASK(1)
#define MASK_OFF DEBUGMASK(2)
#define MASK_SCAN DEBUGMASK(3)
#define MASK_WARN DEBUGMASK(14)
#define MASK_ERROR DEBUGMASK(15)
#define ZONE_INIT DEBUGZONE(0)
#define ZONE_ON DEBUGZONE(1)
#define ZONE_OFF DEBUGZONE(2)
#define ZONE_SCAN DEBUGZONE(3)
#define ZONE_WARN DEBUGZONE(14)
#define ZONE_ERROR DEBUGZONE(15)

 Instantiate the DBGPARAM structure

4. Open the ScanBarcode.cpp file in the ScanBarcode subproject.

5. Add the following code snippet just after the #include Power_Status.h.

 #include "DbgZones.h"

DBGPARAM dpCurSettings =
{

TEXT("ScanBarcode"),
{

TEXT("Init"), TEXT("PwrOn"), TEXT("PwrOff"), TEXT("Scan"),
TEXT("na"), TEXT("na"), TEXT("na"), TEXT("na"),
TEXT("na"), TEXT("na"), TEXT("na"), TEXT("na"),
TEXT("na"), TEXT("na"), TEXT("Warning"), TEXT("Error")

}
, MASK_INIT | MASK_ON | MASK_OFF | MASK_SCAN

};

Lab 7-3 Using Debug Zones in a DLL 3

 Register the Debug Zones

6. Add the following code snippet to the DllMain() function just before the return
statement.

if(ul_reason_for_call==DLL_PROCESS_ATTACH)

 {
 DEBUGREGISTER((HMODULE)hModule);
 }

 Add debug messages to the dll

7. Add the following debug message to the DllMain() function just after the
DEBUGREGISTER macro:

 DEBUGMSG(ZONE_INIT,(_T("ScanBarcode: Initialized!!\r\n")));

8. Add the following debug message to the ScanBarcode() function just before the
return statement:

 DEBUGMSG(ZONE_SCAN,(_T("ScanBarcode: Scanned!!\r\n")));

9. Add the following debug message to the ScanPowerOn() function just before the
return statement:

 DEBUGMSG(ZONE_ON,(_T("ScanBarcode: Power ON!!\r\n")));

10. Add the following debug message to the ScanPowerOff() function just before the
return statement:

 DEBUGMSG(ZONE_OFF,(_T("ScanBarcode: Power OFF!!\r\n")));

11. Save and close ScanBarcode.cpp and DbgZones.h.

 Build the DLL

12. Right click on the ScanBarcode subproject in the Solution Explorer and select
Build.

 Test the application

13. Launch the BarcodeDllTest.exe application using Target | Run Programs from
the Visual Studio menu.

14. Observe the debug message output when you use the Power and Scan buttons.

15. Select Target | CE Debug Zones… from the Visual Studio menu.

4 Lab 7-3 Using Debug Zones in a DLL

16. Scroll down and click on scanbarcode.dll.

17. Click on the Scan check box to remove the check, and click OK.

18. Select the Scan button again in the BarcodeDllTest application.

19. Observe that the ScanBarcode: Scanned!! debug message is no longer being
displayed. This demonstrates the ability to control message output using debug
zones.

Note If you do not have the ability to configure debug zones in a particular module
when using the Target | CE Debug Zones menu, it is probably because there were
no debug zones registered in that particular module.

20. Close the BarcodeDllTest.exe application.

 Change to Release configuration

Note We will change back to the Release configuration now for better performance in
the remaining labs.

21. Detach the device.

22. Select Build | Configuration Manager from the Visual Studio menu

23. Select EVMBSP ARMV4I Release from the Active solution configuration drop
down box.

24. Click on Close.

Lab 8-1: Adding a Catalog Item

Objectives

• Understand how the Catalog works in Windows Embedded CE 6.0

• Be able to add items to the catalog

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 20 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 8-1 Adding a Catalog Item

Exercise 1 Add an item to the catalog
In this exercise you will create and add the CoreCon ARMV4I Files Helper catalog item
to your Windows Embedded CE 6.0 installation. This catalog item will activate a
subproject that brings in the files necessary to support application development with
Visual Studio. The catalog item can be added to any ARMV4I based BSP.

The subproject that implements the component has already been created and is in your
Student files. This subproject simply copies the appropriate binaries into the flat release
directory using a batch file. It also adds bib file entries so that the binaries are included
in the OS run-time image. See the files postlink.bat and CoreCon_Armv4i.bib for details.

 Create 3rdParty area in WINCE600 tree

1. Navigate to C:\WINCE600 with Windows Explorer.

2. Create a directory called 3rdParty (no spaces) in C:\WINCE600.

3. Create a directory called GeneriCo in C:\WINCE600\3rdParty.

4. Create a directory called Catalog in C:\WINCE600\3rdParty\GeneriCo.

Note The 3rdParty area we created above is the standard location for vendors to add
their own functionality other than BSPs. In our case, we are the vendor
GeneriCo. The Platform Builder plugin for Visual Studio will look in
WINCE600\3rdParty*\Catalog for any catalog files that could add items to the
catalog. This provides a consistent mechanism for vendors to add their own
functionality.

 Copy CoreCon_ARMV4I subproject to 3rdParty area

5. Copy the CoreCon_ARMV4I folder from your Student files to our 3rdParty
folder at C:\WINCE600\3rdParty\GeneriCo.

Note This subproject is only implemented for ARMV4I CPUs. It directly includes the
ARMV4I binaries. It could be modified to support all CPU types generically.

 Create a new Catalog Item

6. In Visual Studio, select File | New | File… to open the New File dialog.

7. In the Categories tree, select Platform Builder.

8. In the Templates list, select Platform Builder Catalog File.

Lab 8-1 Adding a Catalog Item 3

9. Click Open. A new catalog file will open in the Visual Studio editor.

10. Right click on the node Catalog [Current file] and select Add Catalog Item in
Subfolder.

11. Name the new folder GeneriCo and select OK.

12. The new Item will appear under the Third Party | GeneriCo node in the Catalog.
Right click on the item and choose Properties. This will bring up the Properties
window for this catalog item.

13. Type CoreCon Files Helper for ARMV4I in the Comment block in the
Identification section.

14. Type CoreCon Files Helper for ARMV4I in the Description block in the
Identification section.

4 Lab 8-1 Adding a Catalog Item

15. Type CoreCon Files Helper for ARMV4I in the Title block in the
Identification section.

16. Type Item:GeneriCo:CoreCon_ARMV4I in the Unique Id block in the
Identification section

17. Type SYSGEN_CORECON_ARMV4I in the Sysgen Variable block in the
Item section.

18. Click in the data area for Subproject Links in the Projects section, then click on
the … button on the right hand side. This will bring up the PbpXml Project
Links dialog.

19. Click Add

20. Navigate to the C:\WINCE600\3rdParty\GeneriCo\CoreCon_Armv4i folder
and select CoreCon_Armv4i.pbpxml.

21. Click OK to close the dialog. The final Properties window should look like the
following:

Lab 8-1 Adding a Catalog Item 5

22. Save the Catalog File to C:\WINCE600\3rdParty\GeneriCo\Catalog, with the
name CoreCon_ARMV4I.PbcXml.

23. Switch to the Catalog Items View if it is not already open.

24. Refresh the Catalog Items View by clicking on the refresh button located on the
command bar.

6 Lab 8-1 Adding a Catalog Item

25. Expand the new GeneriCo node under Third Party, and observe the new
CoreCon Files Helper for ARMV4I item.

26. Select the CoreCon Files Helper for ARMV4I. A green check mark should
appear in the box indicating the item has been added to your OS Design.

27. Switch to the Solution Explorer view.

28. Observe that the CoreCon_ARMV4I subproject has been automatically added to
your design. This OS Design will now include the binaries necessary to support
application debugging with Visual Studio.

Note Do not exclude this subproject from the build. Its purpose is to include files into
the build.

29. Select Build | Advanced Build Commands | Build Current BSP and
Subprojects from the Visual Studio menu. The new OS run-time image will
include the CoreCon helper files.

Lab 8-2: Replace the Standard
Explorer Shell with IESHELL

Objectives

• Understand how to implement a custom shell

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 45 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• A running image from Lab 2-1

2 Lab 8-2 Replace the Standard Explorer Shell with IESHELL

Exercise 1 IESHELL
In this exercise you will clone the IESimple browser application into a new subproject
and call it IESHELL. The IESimple application is a simple container around the IE
browser object. This application is sometimes used as the starting point to write custom
browser based shells.

You will run the application and verify its functionality. You will use this application in
the next exercise as a replacement for the Standard Shell.

 Clone IESIMPLE

1. Using the Solution Explorer, create an empty subproject of type WCE
Application with the name IESHELL.

2. Navigate to C:\WINCE600\PUBLIC\IE\OAK\IESIMPLE and copy all the files
except sources and makefile to your new IESHELL subproject directory at
C:\WINCE600\OSDesigns\EVMOSDesign\EVMOSDesign\IESHELL.

3. Rename iesimple.rc to ieshell.rc in your new subproject directory.

4. Add the newly copied files by right clicking on the IESHELL subproject and
selecting Add | Existing Item…. Add the files mainwnd.h, resource.h,
ieshell.rc and mainwnd.cpp.

5. Right click on the IESHELL subproject and select Open. The SOURCES file
will open in the Visual Studio editor.

6. Add the following INCLUDES directive to the bottom of the file. Ensure there is
a blank line between the INCLUDES directive and the line above it.

INCLUDES= \
$(_WINCEROOT)\PUBLIC\IE\SDK\INC; \
$(_WINCEROOT)\PUBLIC\COMMON\OAK\INC \

7. Add the following libraries immediately after the last library listed in the
TARGETLIBS directive. Ensure there is a blank line after the last entry.

$(_PROJECTROOT)\cesysgen\sdk\lib\$(_CPUINDPATH)\wininet.lib \
$(_PROJECTROOT)\cesysgen\sdk\lib\$(_CPUINDPATH)\commctrl.lib \
$(_PROJECTROOT)\cesysgen\sdk\lib\$(_CPUINDPATH)\uuid.lib \
$(_PROJECTROOT)\cesysgen\sdk\lib\$(_CPUINDPATH)\ole32.lib \
$(_PROJECTROOT)\cesysgen\sdk\lib\$(_CPUINDPATH)\oleaut32.lib \

8. Save and close the file.

9. Right click on the IESHELL subproject and select Build.

Lab 8-2 Replace the Standard Explorer Shell with IESHELL 3

 Test IESHELL

10. Attach to the device if not already attached.

11. Launch ieshell.exe using Target | Run Programs from the Visual Studio menu.
The default home page will appear.

Note You may not be able to access the internet using the IESHELL browser
application. There are a number of issues that can limit connectivity. The device
must be configured for Internet access, there must be a virtual network driver
installed on your development system, you must have Internet connectivity
available at your location etc.

12. Press Ctrl + G to bring up an address dialog box. You may type other web
addresses in this dialog to navigate to other sites.

 Terminate IESHELL

13. Select Target | Target Control from the Visual Studio menu to bring up the
Target Control utility.

14. Type gi proc at the Windows CE prompt to determine the ID of the ieshell.exe
process.

15. Terminate the ieshell process using the kp command at the Windows CE prompt.

4 Lab 8-2 Replace the Standard Explorer Shell with IESHELL

Exercise 2 Configure IESHELL as the shell
In this exercise you will configure IESHELL to run as the default shell application
instead of the Standard Shell. We will rebuild the OS run-time image to include this new
component.

Note You should normally remove the Standard Shell from your OS design if you are
going to use a different application as the shell. We are not going to remove the
Standard Shell in this exercise so that we do not have to rebuild the OS design.

 Detach the device

1. Select Target | Detach Device from the Visual Studio menu.

 Configure IESHELL to launch at boot

2. Open the ieshell.reg file in the IESHELL subproject using the Solution Explorer.

3. Add a new key called Init to HKEY_LOCAL_MACHINE.

4. Add a new String Value to the Init key called Launch50 with the value
ieshell.exe.

5. Add a new Binary Value to the Init key called Depend50 with the value 14 00 1e
00.

Note These registry settings will override existing settings that are provided by the
Standard Shell. They will cause ieshell.exe to be launched automatically during
the boot process. The settings we provide here take precedence because registry
entries from subprojects are processed last during the build.

 Add SignalStarted() to ieshell

6. Open mainwin.cpp from the IESHELL subproject

Lab 8-2 Replace the Standard Explorer Shell with IESHELL 5

7. Add the following code near line 171 to handle the SignalStarted() call. There
should be a PeekMessage statement followed by an “if” logic statement. The code
will need to go between these to points.

 int initSignal = _wtol(lpCmdLine);
 if(initSignal != 0)
 {
 SignalStarted(initSignal);
 if (FAILED(HandleNewWindow2(_T(""),NULL)))
 {
 goto Cleanup;
 }
 }
 else
 {
 // EXISTING CODE HERE
 if(FAILED(HandleNewWindow2(lpCmdLine, NULL)))
 {
 goto Cleanup;
 }
 }

8. Select Build | Advanced Build Commands | Build Current BSP and
Subprojects from the Visual Studio menu.

 Test

9. Open the OS run-time image file (NK.BIN) from the flat release directory. The
Run-Time Image viewer will load.

10. Verify that the [HKLM\Init] key contains ieshell.exe and not explorer.exe

6 Lab 8-2 Replace the Standard Explorer Shell with IESHELL

11. Attach to the device. Observe that the default shell is now ieshell and not the
Standard Shell.

Note We want the Standard Shell for future labs. So we’ll remove ieshell from the OS
design here.

12. Detach the device

13. Right click on the IESHELL subproject in the Solution Explorer and select
Remove

14. Select Build | Advanced Build Commands | Build Current BSP and
Subprojects from the Visual Studio menu.

Lab 8-3: Exporting an SDK

Objectives

• Be able to create an SDK for native code development in Visual Studio 2005

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 15 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

2 Lab 8-3 Exporting an SDK

Exercise 1
In this exercise you will create an SDK based on your OS Design. The SDK can be
installed by application developers using Visual Studio to target applications to your
device.

¾ Add New SDK

1. Select Project | Add New SDK… from the Visual Studio menu.

2. Click General in the left window.

3. Change SDK Name to myTrainingSDK.

4. Fill in Product Name, Company Name, and Company Website with
appropriate values.

5. Add Major, Minor, and Build numbers.

Note You should increment the build number every time you create a new version of
the SDK. The installer uses this version information to compare different
installations of the SDK

6. Select Install in the left window.

Lab 8-3 Exporting an SDK 3

7. Make note of the MSI Folder Path.

8. In the MSI File Name box type myTrainingSDK.msi.

9. Select CPU Families in the left window. SDK Property Pages dialog should
appear as follows.

4 Lab 8-3 Exporting an SDK

10. Select Development Languages in the left window. Note that if you have added
the .NET Compact Framework to your OS Design, you will have the option to
check the Managed development support checkbox.

Lab 8-3 Exporting an SDK 5

11. Select Additional Folders in the left window. This dialog allows you to add
custom folders to your SDK.

12. Click OK.

13. The new SDK will appear in the Solution Explorer in the SDKs node.

¾ Build the new SDK

14. In Solution Explorer under the SDKs folder, right-click myTrainingSDK and
select Build. Once the build is completed, the SDK can be installed from the MSI
file created in the MSI Folder Path.

6 Lab 8-3 Exporting an SDK

Lab 9-1: Developing with Managed
Code
Objectives

• Learn to develop and debug managed applications in a separate Visual Studio
2005 instance

Prerequisites

• Completed Lab 2-1

• Completed Lab 8-1

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• Visual Studio 2005 Service Pack 1

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• .NET Compact Framework 2.0 Service Pack 1 Patch

2 Lab 9-1 Developing with Managed Code

Exercise 1 Create a managed application project
In this exercise you will create a managed application project in a separate instance of
Visual Studio targeting your Windows Embedded CE 6.0 device. You will deploy this
application to the running device and debug it in the next exercise.

 Create a new Managed Project

1. Start a new instance of Visual Studio (NOT the same instance that contains your
Windows Embedded CE 6.0 OS Design; leave that instance running).

2. Select File | New Project … from the Visual Studio menu.

3. In the New Project window select Visual C# | Smart Device | Windows CE 5.0.

4. Select the Device Application template.

5. Name your project HelloWorld, and click OK.

Lab 9-1 Developing with Managed Code 3

Note The Windows CE 5.0 option in the Smart Device category applies to both
Windows CE 5.0 and Windows Embedded CE 6.0 development. There is no
difference between the two OS versions with regard to managed code
development in Visual Studio 2005.

 Add controls to the form

6. Double click on Form1.cs in the HelloWorld project in the Solution Explorer.

4 Lab 9-1 Developing with Managed Code

7. Delete the mainMenu1 control at the bottom of the design window. Our
application will not have a menu.

8. Right click on the form and select Properties.

9. Change the Text property in the Appearance group to MyManagedApp.

10. Expand the Size property in the Layout group. Change the Width and Height to
240.

Lab 9-1 Developing with Managed Code 5

11. Close the Properties window.

12. If the Toolbox is not visible, select View | Toolbox from the Visual Studio menu.

13. Drag a button from the Toolbox onto the center of the form. Size the button to
whatever dimensions you wish.

14. Right click on the button and select Properties.

6 Lab 9-1 Developing with Managed Code

15. Change the Text property in the Appearance group to Click Me!

16. Close the Properties window.

17. Double click the button you just added. The Form1.cs file will open in the editor
with the cursor in the button1_Click () function.

Lab 9-1 Developing with Managed Code 7

18. Add the following code snippet to the click handler.

MessageBox.Show ("Hello World!");

19. Right click the HelloWorld project in the Solution Explorer and select Build.
Your managed application is complete.

8 Lab 9-1 Developing with Managed Code

Exercise 2 Deploy to device
In this exercise you will deploy your application to the device and debug it. The OS run-
time image running on the device already contains the helper files necessary to support
communication between the device and Visual Studio thanks to the helper component we
added in a previous lab.

 Determine device IP address

1. In the CE6 instance of Visual Studio, Attach to the device if not currently
attached.

2. Open the Target Control utility by pressing Alt+1 in the Platform Builder
session of Visual Studio.

3. At the Windows CE prompt, type s ipconfig /d. Note the device IP address.

Note The ipconfig utility was included in our OS Design as a part of the networking
utilities. The /d option causes the output of the command to be displayed in the
debug Output window where we can easily retrieve it.

 Configure managed application development environment for deployment

4. In the Visual Studio instance containing your managed application, select Tools |
Options from the menu.

5. In the Options window, expand the Device Tools node and select Devices.

Lab 9-1 Developing with Managed Code 9

6. In the Show device for platform: drop down box select Windows CE 5.0.

7. Click on Windows CE 5.0 Device and select Properties.

8. Click the Configure button beside the Transport drop down box. We are going
to configure the TCP Connect Transport.

9. Select the Use specific IP address button, and type in the IP address of the target
device.

10. Click OK through all of the dialogs.

10 Lab 9-1 Developing with Managed Code

 Prepare the target device

11. At the Windows CE prompt in the Target Control utility, type s ConmanClient2.

12. Then, type s cmaccept. You now have 3 minutes to establish a connection with
your managed application.

Note These two utilities were included in the CoreCon File Helper that we previously
added to this OS Design.

 Deploy the managed application

13. Set a breakpoint in your application on the call to MessageBox.Show("Hello
World!"); in the button1_Click() function in Form.cs.

14. Select Debug | Start Debugging from the Visual Studio menu.

15. Select Windows CE 5.0 Device from the list of devices in the Deploy
HelloWorld box and click Deploy. Visual Studio will deploy several cab files to
the device in addition to your application. Your application will run on the target
device.

16. Click on the Click Me! button in your application, and you will hit the breakpoint
you just set. You are now debugging your managed application!

Lab 9-2: Integrating a Managed
Application

Objectives

• Learn how to integrate a managed application into the BSP

Prerequisites

• Completed Lab 2-1

• Completed Lab 8-1

• Completed Lab 9-1

Estimated time to complete this lab: 20 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

• Visual Studio 2005 Service Pack 1

• CE 6.0

• CE 6.0 2006 Roll up

• CE 6.0 Service Pack 1

• CE 2007 Updates upto month 9th month{QFEs}

• CE R2

• CE 2007 Updates 11th and 12th month {QFES}

• CE 2008 Updates

• .NET Compact Framework 2.0 Service Pack 1 Patch

2 Lab 9-2 Integrating a Managed Application

Exercise 1 Integrating a managed application
In this exercise you will integrate your managed application directly into the OS run-time
image by including it into the BSP instead of deploying it from Visual Studio.

 Build a Release version of your application

1. Select Build | Configuration Manager from the Visual Studio menu in the
Visual Studio instance that is building your managed HelloWorld project.

2. Select Release from the Active solution configuration drop down box, and click
Close.

3. Select Build | Build Solution from the Visual Studio menu to build the Release
version of your application.

4. Note the output directory for the executable. By default, it will be in your My
Documents folder in the Visual Studio 2005\Projects\HelloWorld\bin\Release
subfolder.

Note The project directory for Visual Studio is configurable using the Options dialog
available from the Tools | Options menu in Visual Studio.

 Add the managed application to your BSP

5. Copy the HelloWorld.exe application from the Visual Studio output directory to
the FILES directory of the EVMBSP located at
C:\WINCE600\PLATFORM\EVMBSP\FILES.

Note Everything in the FILES directory automatically gets copied to the flat release
directory during the Build Release Directory phase.

6. Open platform.bib from the Parameter Files node of the EVMBSP using the
Solution Explorer.

7. Add the following line to the bottom of platform.bib in the FILES section:

HelloWorld.exe $(_FLATRELEASEDIR)\HelloWorld.exe NK

Note Managed applications must be included in the FILES section of a .bib file. Do
not place a managed application in the MODULES section.

Lab 9-2 Integrating a Managed Application 3

 Add the .NET Compact Framework 2.0 to the OS Design

Note We previously only included the OS dependencies for the .NET Compact
Framework 2.0 in our OS Design; we did not include the framework itself. We
allowed Visual Studio to deploy the framework to our device during the managed
code development process. Now we want the framework on the device so that we
can run managed applications without the support of Visual Studio.

8. Detach the device. We are going to be rebuilding the OS run-time image.

9. Locate the .NET Compact Framework 2.0 catalog item in the Catalog Items
View under Core OS | CEBASE | Applications and Services Development |
.NET Compact Framework 2.0.

10. Add the .NET Compact Framework 2.0 catalog item to your OS Design.

Note There are two versions of the .NET Compact Framework 2.0. Be sure to select
the one that does NOT have the – Headless modifier in the name.

 Rebuild the OS Design

11. Select Build | Rebuild EVMOSDesign from the Visual Studio menu. This will
clean our existing design (both Debug and Release) and rebuild the currently
selected Release configuration.

Note This will take several minutes to complete, depending on the capabilities of your
development workstation.

 Test the managed application

12. Attach the device.

13. Navigate to the \Windows directory on the device.

14. Double click on HelloWorld.

Your managed application will load and run. You have successfully integrated your
managed application into your OS run-time image.

Lab 10-1: Using the CETK

Objectives

• Run automated tests using the Windows Embedded CE Test Kit (CETK)

• Modify the default behavior of the standard tests

Prerequisites

• Completed Lab 2-1

Estimated time to complete this lab: 30 minutes

Lab Setup
To complete this lab, you must have:

• A development workstation running Windows XP

• Visual Studio 2005 (Version 8) with Platform Builder plug-in

2 Lab 10-1 Using the CETK

Exercise 1 Run a simple CETK test
In this exercise you will learn how to launch the Windows Embedded CE Test Kit. You
will run selected tests and observe the results.

 Launch the Windows Embedded CE Test Kit

1. Ensure that the EVM is attached.

2. Copy the file ktux.dll from the C:\Program Files\Microsoft Platform
Builder\6.00\cepb\wcetk\ddtk\armv4i folder on your workstation to
the \windows directory on your device.

3. Using the Start Menu on your workstation, select Start | All Programs |
Windows Embedded CE 6.0 | Windows Embedded CE 6.0 Test Kit. The
Windows Embedded CE Test Kit (CETK) window will appear.

Note The CETK is not available from within the Visual Studio 2005 development
environment.

4. Select Connection | Start Client… from the CETK menu. The Device
Connection dialog will appear.

Lab 10-1 Using the CETK 3

4 Lab 10-1 Using the CETK

5. Click on Connect…. The Select a Windows CE Device dialog will appear.

6. Click OK to accept the Default Device connection. The CETK server on the
development workstation will download client software to the device and connect
to it.

Lab 10-1 Using the CETK 5

Note The CETK supports multiple connection methods. This allows the test suite to be
used in a variety of scenarios. We are using the same connection that we have
been using with the Remote Tools. This connection configuration relies on the
KITL transport.

6 Lab 10-1 Using the CETK

 Run selected tests

7. Expand the WindowsCE (ARMV4I) node.

8. Expand the Windows Embedded CE Test Catalog node to show the test groups.

9. Right click on Windows Embedded CE Test Catalog and choose Deselect All
Tests.

Lab 10-1 Using the CETK 7

Note By default, the CETK will select the all the tests it determines are appropriate for
the device. We wish to run only a subset of the tests, so it is easier to select them
individually.

10. Expand the Touch Panel node and select Touch Panel Test.

11. Expand the Other Tests node and select Battery API Test. Note that the list is
not in alphabetical order.

8 Lab 10-1 Using the CETK

12. Select Tests | Start/Stop Tests | WindowsCE (ARMV4I) from the CETK menu.
The CETK will indicate which test is currently running.

Note Some tests are fully automatic, others require user interaction.

13. Follow the instructions on the EVM screen to complete the tests that require user
input.

14. Switch to Visual Studio and view the testing progress in the Output window. You
will see details of what the test is doing in addition to the results. These same
results will be available from within the CETK once the tests are complete.

Lab 10-1 Using the CETK 9

 View results

15. Once the tests are complete switch back to the Windows Embedded CE Test Kit
window.

16. Select Tests | View Results | WindowsCE (ARMV4I) | View All Results from
the CETK menu. The CETKParser window will appear.

17. Click on the Battery_API_Test.log in the top pane. The middle pane will show
each of the subtests along with their status.

18. Click on the last subtest, BatteryGetLifeTimeInfo in the middle pane. The
bottom pane will show the detailed test log for that particular subtest.

19. Close the CETKParser window.

10 Lab 10-1 Using the CETK

Exercise 2 Modify the command line for CETK tests
In this exercise you will modify the command line of individual tests. Each test typically
has a number of configurable parameters that can be changed from within the CETK
window. These parameters can be used to target the testing to a particular problem area,
speeding up the overall development cycle. The CETK test harness itself also has
configurable parameters.

 Configure Graphics Device Interface Test

1. Right click on the Graphics Device Interface Test in the Display node and
select Test Information. The documentation for this specific test will load in the
Microsoft Document Explorer. The documentation indicates what parameters are
available for this specific test.

Note There are typically several pages in the documentation for each test. You may
have to change to a different page to see the command line parameters.

2. Right click on the Graphics Device Interface Test in the Display node and
select Edit Command Line…

3. Add the following command line parameters to the end of the existing command
line:

-x 301 -c"/Width 240 /Height 240"

Lab 10-1 Using the CETK 11

Note The –x parameter tells the test harness to run only subtest number 301.

 The –c parameter tells the test harness to pass everything in quotes to the actual
test dll, in this case gdiapi. The parameters within quotes are interpreted by the
individual test and are not consistent among tests.

4. Click OK to temporarily change the command line.

5. Right click on the Graphics Device Interface Test and select Quick Start. This
individual test will run, and no others. This is a convenient way to run targeted
tests.

Note For a lab that covers writing custom CETK tests, go to www.microsoft.com and
search for Advanced Automated Test Development with TUX.

